咨询与建议

限定检索结果

文献类型

  • 37 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 46 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 45 篇 工学
    • 18 篇 仪器科学与技术
    • 17 篇 土木工程
    • 10 篇 电气工程
    • 10 篇 计算机科学与技术...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 控制科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 软件工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 测绘科学与技术
    • 1 篇 地质资源与地质工...
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 安全科学与工程
  • 10 篇 管理学
    • 10 篇 管理科学与工程(可...
  • 9 篇 理学
    • 4 篇 物理学
    • 3 篇 化学
    • 3 篇 生物学
    • 1 篇 海洋科学
    • 1 篇 地球物理学

主题

  • 46 篇 data anomaly det...
  • 17 篇 structural healt...
  • 6 篇 deep learning
  • 6 篇 convolutional ne...
  • 4 篇 long-span bridge
  • 3 篇 feature extracti...
  • 3 篇 computer vision
  • 2 篇 transfer learnin...
  • 2 篇 kalman filter
  • 2 篇 wireless sensor ...
  • 2 篇 measurement deno...
  • 2 篇 active distribut...
  • 2 篇 structural healt...
  • 2 篇 machine learning
  • 2 篇 margin-based max...
  • 2 篇 koopman mode ana...
  • 2 篇 relevance vector...
  • 2 篇 convolutional ne...
  • 1 篇 statistical data...
  • 1 篇 support vector d...

机构

  • 4 篇 harbin inst tech...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing jiaotong...
  • 2 篇 harbin inst tech...
  • 2 篇 harbin inst tech...
  • 2 篇 washington state...
  • 2 篇 hong kong polyte...
  • 2 篇 harbin inst tech...
  • 1 篇 jsti grp peoples...
  • 1 篇 dalian univ tech...
  • 1 篇 lero sfi softwar...
  • 1 篇 xian asn technol...
  • 1 篇 tongji univ coll...
  • 1 篇 vietnam maritime...
  • 1 篇 sangji univ dept...
  • 1 篇 univ limerick li...
  • 1 篇 bundesamt kartog...
  • 1 篇 gachon univ dept...
  • 1 篇 tech univ darmst...
  • 1 篇 hebei univ hebei...

作者

  • 5 篇 bao yuequan
  • 3 篇 xia yong
  • 3 篇 tang zhiyi
  • 3 篇 li hui
  • 2 篇 zhang yuxuan
  • 2 篇 liu datong
  • 2 篇 wang xiaoyou
  • 2 篇 pan qiuyue
  • 2 篇 vosughi amirkhos...
  • 2 篇 gholami amir
  • 2 篇 du yao
  • 2 篇 rassam murad a.
  • 2 篇 spencer billie f...
  • 2 篇 maarof mohd aiza...
  • 2 篇 zainal anazida
  • 2 篇 srivastava anura...
  • 2 篇 liu liansheng
  • 1 篇 sosnica krzyszto...
  • 1 篇 liang yingwei
  • 1 篇 sun wupeng

语言

  • 44 篇 英文
  • 2 篇 其他
检索条件"主题词=Data anomaly detection"
46 条 记 录,以下是1-10 订阅
排序:
data anomaly detection for structural health monitoring using the Mixture of Bridge Experts
收藏 引用
STRUCTURES 2025年 71卷
作者: Hao, Changshun Gong, Yu Liu, Baodong Pan, Zhenhua Sun, Wupeng Li, Yan Zhuo, Yi Ma, Yongpeng Zhang, Linlin Beijing Jiaotong Univ Sch Civil Engn Beijing 100044 Peoples R China China Railway Design Corp Tianjin 300000 Peoples R China Beijing Inst Technol Sch Mechatron Engn Beijing 100081 Peoples R China China Railway Shanghai Grp Co Ltd Shanghai 200071 Peoples R China
Structure health monitoring systems (SHMs) play a crucial role in understanding the condition of structures. However, owing to various uncertain factors, sensor data may be anomalous, posing a great challenge to the r... 详细信息
来源: 评论
data anomaly detection for structural health monitoring using a combination network of Ganomaly and CNN
收藏 引用
SMART STRUCTURES AND SYSTEMS 2022年 第1期29卷 53-62页
作者: Liu, Gaoyang Niu, Yanbo Zhao, Weijian Duan, Yuanfeng Shu, Jiangpeng Zhejiang Univ Coll Civil Engn & Architecture Hangzhou 310058 Peoples R China Zhejiang Univ Ctr Balance Architecture Hangzhou 310058 Peoples R China Zhejiang Univ Co Ltd Architectural Design & Res Inst Hangzhou 310058 Peoples R China
The deployment of advanced structural health monitoring (SHM) systems in large-scale civil structures collects large amounts of data. Note that these data may contain multiple types of anomalies (e.g., missing, minor,... 详细信息
来源: 评论
data anomaly detection for Bridge SHM Based on CNN Combined with Statistic Features
收藏 引用
JOURNAL OF NONDESTRUCTIVE EVALUATION 2022年 第1期41卷 28-28页
作者: Zhang, Han Lin, Jing Hua, Jiadong Gao, Fei Tong, Tong Beihang Univ Sch Reliabil & Syst Engn Xueyuan Rd 37 Beijing Peoples R China Beihang Univ Sci & Technol Reliabil & Environm Engn Lab Xueyuan Rd 37 Beijing Peoples R China Beihang Univ Adv Mfg Ctr Ningbo Inst Technol Ningbo 315100 Peoples R China Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Peoples R China
Structural health monitoring of long-span bridge has received increasing attention in recent years. In order to achieve accurate monitoring, the integrity of data collection should be guaranteed. Unfortunately, these ... 详细信息
来源: 评论
A Power data anomaly detection Model Based on Deep Learning with Adaptive Feature Fusion
收藏 引用
Computers, Materials & Continua 2024年 第6期79卷 4045-4061页
作者: Xiu Liu Liang Gu Xin Gong Long An Xurui Gao Juying Wu State Grid Information&Telecommunication Co.of SEPC Big Data CenterTaiyuan030000China
With the popularisation of intelligent power,power devices have different shapes,numbers and *** means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction... 详细信息
来源: 评论
Deep learning-based data anomaly detection for highway slope structural health monitoring: A comparative study
收藏 引用
TRANSPORTATION GEOTECHNICS 2025年 51卷
作者: Dong, Shi Long, Zhiyou Zhang, Shiyuan Wang, Jianwei Zuo, Chen Yang, Chao Jiang, Jinyi Cui, Zhiwei Wan, Zhaolong Changan Univ Sch Transportat Engn Xian 710064 Peoples R China Changan Univ Engn Res Ctr Highway Infrastruct Digitalizat Minist Educ PRC Xian 710064 Peoples R China Zhejiang Sci Res Inst Transport Hangzhou 310023 Peoples R China Shaanxi Expressway Engn Testing Inspect & Testing Xian 710086 Peoples R China Zhejiang Inst Commun Zhejiang Engn Res Ctr Digital Highway Appl Technol Hangzhou 311112 Peoples R China
Highway slope instability has a significant influence on traffic safety. However, there are many anomalies in slope SHM data, which is critical to timely warnings and safety assessments of slopes. In this paper, we ca... 详细信息
来源: 评论
Transfer learning-based data anomaly detection for structural health monitoring
收藏 引用
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL 2023年 第5期22卷 3077-3091页
作者: Pan, Qiuyue Bao, Yuequan Li, Hui Harbin Inst Technol Minist Ind & Informat Technol Key Lab Smart Prevent & Mitigat Civil Engn Disaste Harbin Peoples R China Harbin Inst Technol Minist Educ Key Lab Struct Dynam Behav & & Control Harbin Peoples R China Harbin Inst Technol Sch Civil Engn Harbin Peoples R China Harbin Inst Technol Sch Civil Engn 73 Huanghe Rd Harbin 150001 Peoples R China
The structural health monitoring (SHM) data of civil infrastructure are inevitably contaminated due to sensor faults, environmental noise interference, and data transmission failures. Anomalous data severely disturb t... 详细信息
来源: 评论
data anomaly detection for Structural Health Monitoring Based on a Convolutional Neural Network
收藏 引用
SENSORS 2023年 第20期23卷 8525页
作者: Kim, Soon-Young Mukhiddinov, Mukhriddin Gachon Univ Dept Phys Educ Seongnam 13120 South Korea Univ Management & Future Technol Dept Commun & Digital Technol Tashkent 100208 Uzbekistan
Structural health monitoring (SHM) has been extensively utilized in civil infrastructures for several decades. The status of civil constructions is monitored in real time using a wide variety of sensors;however, deter... 详细信息
来源: 评论
A novel and robust data anomaly detection framework using LAL-AdaBoost for structural health monitoring
收藏 引用
JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING 2022年 第2期12卷 305-321页
作者: Xu, Jie Dang, Dazhi Ma, Qian Liu, Xuan Han, Qinghua Tianjin Univ Sch Civil Engn Tianjin 300350 Peoples R China Tianjin Univ Key Lab Earthquake Engn Simulat & Seism Resilienc China Earthquake Adm Tianjin 300350 Peoples R China Tianjin Univ Minist Educ Key Lab Coast Civil Struct Safety Tianjin 300350 Peoples R China
The development of structural health monitoring (SHM) on civil infrastructures has resulted in enormous amount of acquired data along with the pressure of data processing and data mining. Abnormalities in data can lea... 详细信息
来源: 评论
Convolutional neural network-based data anomaly detection considering class imbalance with limited data
收藏 引用
SMART STRUCTURES AND SYSTEMS 2022年 第1期29卷 63-75页
作者: Du, Yao Li, Ling-fang Hou, Rong-rong Wang, Xiao-you Tian, Wei Xia, Yong Hong Kong Polytech Univ Dept Civil & Environm Engn Hong Kong Peoples R China
The raw data collected by structural health monitoring (SHM) systems may suffer multiple patterns of anomalies, which pose a significant barrier for an automatic and accurate structural condition assessment. Therefore... 详细信息
来源: 评论
CNN based data anomaly detection using multi-channel imagery for structural health monitoring
收藏 引用
SMART STRUCTURES AND SYSTEMS 2022年 第1期29卷 181-193页
作者: Shajihan, Shaik Althaf, V Wang, Shuo Zhai, Guanghao Spencer, Billie F., Jr. Univ Illinois Dept Civil & Environm Engn Urbana IL 61801 USA
data-driven structural health monitoring (SHM) of civil infrastructure can be used to continuously assess the state of a structure, allowing preemptive safety measures to be carried out. Long-term monitoring of large-... 详细信息
来源: 评论