咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 data-parallel al...
  • 1 篇 second-order opt...
  • 1 篇 machine learning
  • 1 篇 distributed comp...
  • 1 篇 k-fac

机构

  • 1 篇 argonne natl lab...
  • 1 篇 univ wisconsin m...
  • 1 篇 univ chicago il ...
  • 1 篇 texas adv comp c...
  • 1 篇 univ texas austi...

作者

  • 1 篇 chard kyle
  • 1 篇 zhang zhao
  • 1 篇 huang qi
  • 1 篇 pauloski j. greg...
  • 1 篇 huang lei
  • 1 篇 foster ian
  • 1 篇 venkataraman shi...

语言

  • 1 篇 英文
检索条件"主题词=Data-Parallel Algoritluns"
1 条 记 录,以下是1-10 订阅
排序:
KAISA: An Adaptive Second -Order Optimizer Framework for Deep Neural Networks  21
KAISA: An Adaptive Second -Order Optimizer Framework for Dee...
收藏 引用
International Conference for High Performance Computing, Networking, Storage and Analysis (SC21)
作者: Pauloski, J. Gregory Huang, Qi Huang, Lei Venkataraman, Shivaram Chard, Kyle Foster, Ian Zhang, Zhao Univ Chicago Chicago IL 60637 USA Univ Texas Austin Austin TX 78712 USA Texas Adv Comp Ctr Austin TX USA Univ Wisconsin Madison WI USA Argonne Natl Lab Argonne IL 60439 USA
Kronecker-factored Approximate Curvature (K-FAC) has recently been shown to converge faster in deep neural network (DNN) training than stochastic gradient descent (SCD);however, K-FAC's larger memory footprint hin... 详细信息
来源: 评论