咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 11 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 8 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 2 篇 控制科学与工程
    • 2 篇 石油与天然气工程
    • 1 篇 动力工程及工程热...
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 1 篇 理学
    • 1 篇 数学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 11 篇 data-driven evol...
  • 3 篇 optimization
  • 2 篇 model management
  • 2 篇 task analysis
  • 2 篇 iron
  • 2 篇 computational mo...
  • 2 篇 federated learni...
  • 2 篇 surrogate
  • 1 篇 distributed opti...
  • 1 篇 structural optim...
  • 1 篇 dynamic optimiza...
  • 1 篇 rbfn surrogate m...
  • 1 篇 online combustio...
  • 1 篇 kernel methods
  • 1 篇 multi-
  • 1 篇 expensive dynami...
  • 1 篇 metalearning
  • 1 篇 surrogate-assist...
  • 1 篇 non-gaussian pro...
  • 1 篇 multiscale and h...

机构

  • 2 篇 china univ geosc...
  • 2 篇 univ surrey dept...
  • 1 篇 ctr climate res ...
  • 1 篇 univ elect sci &...
  • 1 篇 chongqing univ c...
  • 1 篇 univ surrey dept...
  • 1 篇 univ exeter dept...
  • 1 篇 east china univ ...
  • 1 篇 southern univ sc...
  • 1 篇 univ exeter dept...
  • 1 篇 zhejiang univ pe...
  • 1 篇 south china univ...
  • 1 篇 hubei key lab ad...
  • 1 篇 china univ geosc...
  • 1 篇 northeastern uni...
  • 1 篇 hubei key lab ad...
  • 1 篇 univ geosci peop...
  • 1 篇 china univ geosc...
  • 1 篇 natl innovat ins...
  • 1 篇 westlake univ pe...

作者

  • 3 篇 li changhe
  • 3 篇 zeng sanyou
  • 3 篇 hu caie
  • 2 篇 xu jinjin
  • 2 篇 jin yaochu
  • 2 篇 du wenli
  • 2 篇 li ke
  • 1 篇 yao jun
  • 1 篇 yao xin
  • 1 篇 huang yaji
  • 1 篇 yao chuanjin
  • 1 篇 naing htet
  • 1 篇 wang jian
  • 1 篇 chen renzhi
  • 1 篇 gu sai
  • 1 篇 sun kai
  • 1 篇 zhong jinghui
  • 1 篇 li weikun
  • 1 篇 zhao fei
  • 1 篇 chen hao

语言

  • 10 篇 英文
检索条件"主题词=Data-driven evolutionary optimization"
11 条 记 录,以下是1-10 订阅
排序:
Research on reducing pollutant, improving efficiency and enhancing running safety for 1000 MW coal-fired boiler based on data-driven evolutionary optimization and online retrieval method
收藏 引用
APPLIED ENERGY 2025年 377卷
作者: Xu, Wentao Poh, Kimleng Song, Siheng Huang, Yaji Southeast Univ Minist Educ Key Lab Energy Thermal Convers & Proc Measurement Nanjing 210096 Peoples R China Natl Univ Singapore Dept Ind Syst Engn & Management S-117576 Singapore Singapore Dalian Power Supply Co State Grid Liaoning Elect Power Co Ltd Dalian 116001 Peoples R China
This article adopts data-driven evolutionary optimization and online retrieval method to generate the boiler online combustion decisions and improve the boiler working performance. Improved sparrow search algorithm- b... 详细信息
来源: 评论
Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic data-driven evolutionary optimization
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2025年 第2期26卷 1930-1950页
作者: Naing, Htet Cai, Wentong Yu, Jinqiang Zhong, Jinghui Yu, Liang Nanyang Technol Univ Coll Comp & Data Sci Singapore 639798 Singapore Ctr Climate Res Singapore Coll Comp & Data Sci Singapore 537054 Singapore City Brain Lab AlibabaCloud Hangzhou 311121 Peoples R China South China Univ Technol Jinghui Zhong is Sch Comp Sci & Engn Guangzhou 510641 Peoples R China
Vehicle trajectory data are essential in smart mobility applications, yet often incomplete, necessitating systematic reconstruction for effective use. Existing methods often overlook traffic rules and vehicle interact... 详细信息
来源: 评论
A Robust Offline data-driven evolutionary optimization Algorithm for Solving Expensive Soft Pneumatic Actuator Design
A Robust Offline Data-Driven Evolutionary Optimization Algor...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Chen, Hao Wang, Zhenhua Sun, Kai Cui, Weicheng Li, Weikun Zhejiang Univ Hangzhou Peoples R China Westlake Univ Hangzhou Peoples R China
data-driven evolutionary algorithms (DDEAs) using surrogate models have been successfully applied in solving expensive optimization problems. However, many real-world engineering optimization problems can only build s... 详细信息
来源: 评论
A data-driven evolutionary Transfer optimization for Expensive Problems in Dynamic Environments
收藏 引用
IEEE TRANSACTIONS ON evolutionary COMPUTATION 2024年 第5期28卷 1396-1411页
作者: Li, Ke Chen, Renzhi Yao, Xin Univ Elect Sci & Technol China Coll Comp Sci & Engn Chengdu 611731 Peoples R China Univ Exeter Dept Comp Sci Exeter EX44 QF England Natl Innovat Inst Def Technol Coll Comp Sci & Engn Beijing 100091 Peoples R China Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen 518055 Peoples R China
Many real-world problems are computationally costly and the objective functions evolve over time. data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach to tackl... 详细信息
来源: 评论
Multiscale-Network Structure Inversion of Fractured Media Based on a Hierarchical-Parameterization and data-driven evolutionary-optimization Method
收藏 引用
SPE JOURNAL 2020年 第5期25卷 2729-2748页
作者: Ma, Xiaopeng Zhang, Kai Yao, Chuanjin Zhang, Liming Wang, Jian Yang, Yongfei Yao, Jun Univ Petr East China Shandong Peoples R China
Efficient identification and characterization of fracture networks are crucial for the exploitation of fractured media such as naturally fractured reservoirs. Using the information obtained from borehole logs, core im... 详细信息
来源: 评论
A federated data-driven evolutionary algorithm for expensive multi-/many-objective optimization
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2021年 第6期7卷 3093-3109页
作者: Xu, Jinjin Jin, Yaochu Du, Wenli East China Univ Sci & Technol Key Lab Adv Control & Optimizat Chem Processess Minist Educ Shanghai 200237 Peoples R China Univ Surrey Dept Comp Sci Guildford GU2 7XH Surrey England
data-driven optimization has found many successful applications in the real world and received increased attention in the field of evolutionary optimization. Most existing algorithms assume that the data used for opti... 详细信息
来源: 评论
Solving Expensive optimization Problems in Dynamic Environments With Meta-Learning
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2024年 第12期54卷 7430-7442页
作者: Zhang, Huan Ding, Jinliang Feng, Liang Tan, Kay Chen Li, Ke Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China Hong Kong Polytech Univ Dept Data Sci & Artificial Intelligence Hong Kong Peoples R China Univ Exeter Dept Comp Sci Exeter EX4 4QF Devon England
Dynamic environments pose great challenges for expensive optimization problems, as the objective functions of these problems change over time and thus require remarkable computational resources to track the optimal so... 详细信息
来源: 评论
An Uncertainty Measure for Prediction of Non-Gaussian Process Surrogates
收藏 引用
evolutionary COMPUTATION 2023年 第1期31卷 53-71页
作者: Hu, Caie Zeng, Sanyou Li, Changhe China Univ Geosci Sch Mech Engn & Elect Informat Wuhan 430074 Peoples R China China Univ Geosci Sch Automat Wuhan 430074 Peoples R China Hubei Key Lab Adv Control & Intelligent Automat Wuhan 430074 Peoples R China Minist Educ Engn Res Ctr Intelligent Technol Geoexplorat Wuhan 430074 Peoples R China
Model management is an essential component in data-driven surrogate-assisted evolutionary optimization. In model management, the solutions with a large degree of uncertainty in approximation play an important role. Th... 详细信息
来源: 评论
On Nonstationary Gaussian Process Model for Solving data-driven optimization Problems
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2023年 第4期53卷 2440-2453页
作者: Hu, Caie Zeng, Sanyou Li, Changhe Zhao, Fei China Univ Geosci Sch Mech Engn & Elect Informat Wuhan 430074 Peoples R China Sch Automat Wuhan 430074 Peoples R China Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Peoples R China Univ Geosci Wuhan 430074 Peoples R China Southwest Elect & Telecommun Technol Res Inst Sci & Technol Blind Signal Proc Lab Chengdu 610041 Peoples R China
In data-driven evolutionary optimization, most existing Gaussian processes (GPs)-assisted evolutionary algorithms (EAs) adopt stationary GPs (SGPs) as surrogate models, which might be insufficient for solving most opt... 详细信息
来源: 评论
A federated data-driven evolutionary algorithm
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2021年 233卷 107532-107532页
作者: Xu, Jinjin Jin, Yaochu Du, Wenli Gu, Sai East China Univ Sci & Technol Key Lab Smart Mfg Energy Chem Proc Minist Educ Shanghai 200237 Peoples R China Univ Surrey Dept Comp Sci Guildford GU2 7XH Surrey England Univ Surrey Dept Chem Proc Engn Guildford GU2 7XH Surrey England
data-driven evolutionary optimization has witnessed great success in solving complex real-world optimization problems. However, existing data-driven optimization algorithms require that all data are centrally stored, ... 详细信息
来源: 评论