Neural operators, which can act as implicit solution operators of hidden governing equations, have recently become popular tools for learning the responses of complex real -world physical systems. Nevertheless, most n...
详细信息
Neural operators, which can act as implicit solution operators of hidden governing equations, have recently become popular tools for learning the responses of complex real -world physical systems. Nevertheless, most neural operator applications have thus far been data -driven and neglect the intrinsic preservation of fundamental physical laws in data. In this work, we introduce a novel integral neural operator architecture called the Peridynamic Neural Operator (PNO) that learns a nonlocal constitutive law from data. This neural operator provides a forward model in the form of state -based peridynamics, with objectivity and momentum balance laws automatically guaranteed. As applications, we demonstrate the expressivity and efficacy of our model in learning complex material behaviors from both synthetic and experimental data sets. We also compare the performances with baseline models that use predefined constitutive laws. We show that, owing to its ability to capture complex responses, our learned neural operator achieves improved accuracy and efficiency. Moreover, by preserving the essential physical laws within the neural network architecture, the PNO is robust in treating noisy data. The method shows generalizability to different domain configurations, external loadings, and discretizations.
Gradient-based meta-learning methods have primarily been applied to classical machine learning tasks such as image classification. Recently, partial differential equation (PDE)-solving deep learning methods, such as n...
详细信息
Gradient-based meta-learning methods have primarily been applied to classical machine learning tasks such as image classification. Recently, partial differential equation (PDE)-solving deep learning methods, such as neural operators, are starting to make an important impact on learning and predicting the response of a complex physical system directly from observational data. Taking the material modeling problems for example, the neural operator approach learns a surrogate mapping from the loading field to the corresponding material response field, which can be seen as learning the solution operator of a hidden PDE. The microstructure and mechanical parameters of each material specimen correspond to the (possibly heterogeneous) parameter field in this hidden PDE. Due to the limitation on experimental measurement techniques, the data acquisition for each material specimen is commonly challenging and may also be costly. This fact calls for the utilization and transfer of existing knowledge to new and unseen material specimens, which corresponds to sampling efficient learning of the solution operator of a hidden PDE with a different parameter field. Herein, we propose a novel meta-learning approach for neural operators that can be seen as transferring the knowledge of solution operators between governing (unknown) PDEs with varying parameter fields. Our approach is a provably universal solution operator for multiple PDE solving tasks, with a key theoretical observation that underlying parameter fields can be captured in the first layer of neural operator models, in contrast to typical final-layer transfer in existing meta-learning methods. As applications, we demonstrate the efficacy of our proposed approach on PDE-based datasets and a real-world material modeling problem, illustrating that our method can handle complex and nonlinear physical response learning tasks while greatly improving the sampling efficiency in unseen tasks. (c) 2023 Elsevier B.V. All rights reserv
暂无评论