咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 11 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 工学
    • 9 篇 计算机科学与技术...
    • 1 篇 土木工程
  • 6 篇 理学
    • 5 篇 物理学
    • 1 篇 数学
  • 1 篇 法学
    • 1 篇 法学

主题

  • 11 篇 data-driven scie...
  • 8 篇 machine learning
  • 3 篇 partial differen...
  • 2 篇 sparse regressio...
  • 2 篇 physics-informed...
  • 2 篇 finite element m...
  • 1 篇 multi-objective ...
  • 1 篇 preconditioning
  • 1 篇 modified differe...
  • 1 篇 generalization t...
  • 1 篇 high-performance...
  • 1 篇 deep learning
  • 1 篇 model architectu...
  • 1 篇 sensor-driven tr...
  • 1 篇 uncertainty quan...
  • 1 篇 chloride
  • 1 篇 learning unknown...
  • 1 篇 wasserstein gene...
  • 1 篇 predictive model...
  • 1 篇 implicit runge-k...

机构

  • 2 篇 purdue univ dept...
  • 1 篇 oak ridge natl l...
  • 1 篇 univ padua dept ...
  • 1 篇 brown univ div a...
  • 1 篇 dr bv raju inst ...
  • 1 篇 simula res lab n...
  • 1 篇 purdue univ sch ...
  • 1 篇 purdue univ sch ...
  • 1 篇 southeast univ s...
  • 1 篇 purdue univ dept...
  • 1 篇 purdue univ dept...
  • 1 篇 univ british col...
  • 1 篇 univ hong kong d...
  • 1 篇 m3e srl padua
  • 1 篇 univ penn dept m...
  • 1 篇 univ tennessee k...
  • 1 篇 louisiana tech u...
  • 1 篇 purdue univ dept...
  • 1 篇 tech univ munich...

作者

  • 3 篇 lin guang
  • 2 篇 moya christian
  • 1 篇 perdikaris p.
  • 1 篇 dongarra jack
  • 1 篇 ng michael k.
  • 1 篇 betancourt frank
  • 1 篇 vadyala shashank...
  • 1 篇 gao yihang
  • 1 篇 betgeri naga par...
  • 1 篇 zhang sheng
  • 1 篇 spiezia nicolo
  • 1 篇 lu binghang
  • 1 篇 tomov stanimire
  • 1 篇 duan kangkang
  • 1 篇 wong kwai
  • 1 篇 mitusch sebastia...
  • 1 篇 cao shuangyin
  • 1 篇 nichols daniel
  • 1 篇 thaler stephan
  • 1 篇 tomov nathalie-s...

语言

  • 11 篇 英文
检索条件"主题词=Data-driven scientific computing"
11 条 记 录,以下是1-10 订阅
排序:
MagmaDNN: Towards High-Performance data Analytics and Machine Learning for data-driven scientific computing  34th
MagmaDNN: Towards High-Performance Data Analytics and Machin...
收藏 引用
34th International Conference on High Performance computing (ISC High Performance)
作者: Nichols, Daniel Tomov, Nathalie-Sofia Betancourt, Frank Tomov, Stanimire Wong, Kwai Dongarra, Jack Univ Tennessee Knoxville TN 37996 USA Oak Ridge Natl Lab POB 2009 Oak Ridge TN 37831 USA
In this paper, we present work towards the development of a new data analytics and machine learning (ML) framework, called MagmaDNN. Our main goal is to provide scalable, high-performance data analytics and ML solutio... 详细信息
来源: 评论
On Physics-Informed Neural Networks training for coupled hydro-poromechanical problems
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2024年 516卷
作者: Millevoi, Caterina Spiezia, Nicolo Ferronato, Massimiliano Univ Padua Dept Civil Environm & Architectural Engn Padua Italy M3E Srl Padua Italy
The robust and efficient numerical solution of coupled hydro-poromechanical problems is of paramount importance in many application fields, in particular in geomechanics and biomechanics. Even though the solution by m... 详细信息
来源: 评论
DAE-PINN: a physics-informed neural network model for simulating differential algebraic equations with application to power networks
收藏 引用
NEURAL computing & APPLICATIONS 2023年 第5期35卷 3789-3804页
作者: Moya, Christian Lin, Guang Purdue Univ Dept Math W Lafayette IN 47906 USA Purdue Univ Dept Mech Engn W Lafayette IN 47906 USA
Deep learning-based surrogate modeling is becoming a promising approach for learning and simulating dynamical systems. However, deep-learning methods find it very challenging to learn stiff dynamics. In this paper, we... 详细信息
来源: 评论
Revealing the nature of concrete materials using soft computing models
收藏 引用
JOURNAL OF BUILDING ENGINEERING 2022年 59卷
作者: Duan, Kangkang Cao, Shuangyin Zou, Zhengbo Huang, Lei He, Zhili Univ British Columbia Dept Civil Engn Vancouver BC Canada Southeast Univ Sch Civil Engn Nanjing Peoples R China
The durability of materials has long been a topic undergoing intense study in civil engineering. This paper used a novel approach to foster current research in two aspects: identifying dominant concrete properties and... 详细信息
来源: 评论
NSGA-PINN: A Multi-Objective Optimization Method for Physics-Informed Neural Network Training
收藏 引用
ALGORITHMS 2023年 第4期16卷 194-194页
作者: Lu, Binghang Moya, Christian Lin, Guang Purdue Univ Dept Comp Sci W Lafayette IN 47906 USA Purdue Univ Dept Math W Lafayette IN 47906 USA Purdue Univ Sch Mech Engn W Lafayette IN 47906 USA
This paper presents NSGA-PINN, a multi-objective optimization framework for the effective training of physics-informed neural networks (PINNs). The proposed framework uses the non-dominated sorting genetic algorithm (... 详细信息
来源: 评论
Wasserstein generative adversarial uncertainty quantification in physics-informed neural networks
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2022年 463卷 1页
作者: Gao, Yihang Ng, Michael K. Univ Hong Kong Dept Math Hong Kong Peoples R China
In this paper, we study a physics-informed algorithm for Wasserstein Generative Adversarial Networks (WGANs) for uncertainty quantification in solutions of partial differential equations. By using groupsort activation... 详细信息
来源: 评论
Physics-informed neural network method for solving one-dimensional advection equation using PyTorch
收藏 引用
ARRAY 2022年 13卷
作者: Vadyala, Shashank Reddy Betgeri, Sai Nethra Betgeri, Naga Parameshwari Louisiana Tech Univ Dept Computat Anal & Modeling Ruston LA 71270 USA Dr BV Raju Inst Technol Dept Business & Adm Medak Telangana India
Numerical solutions to the equation for advection are determined using different finite-difference approximations and physics-informed neural networks (PINNs) under conditions that allow an analytical solution. Their ... 详细信息
来源: 评论
Hybrid FEM-NN models: Combining artificial neural networks with the finite element method
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2021年 446卷 110651-110651页
作者: Mitusch, Sebastian K. Funke, Simon W. Kuchta, Miroslav Simula Res Lab N-1364 Fornebu Norway
We present a methodology combining neural networks with physical principle constraints in the form of partial differential equations (PDEs). The approach allows to train neural networks while respecting the PDEs as a ... 详细信息
来源: 评论
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2019年 378卷 686-707页
作者: Raissi, M. Perdikaris, P. Karniadakis, G. E. Brown Univ Div Appl Math Providence RI 02912 USA Univ Penn Dept Mech Engn & Appl Mech Philadelphia PA 19104 USA
We introduce physics-informed neural networks - neural networks that are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear partial differential equati... 详细信息
来源: 评论
Sparse identification of truncation errors
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2019年 397卷 108851-108851页
作者: Thaler, Stephan Paehler, Ludger Adams, Nikolaus A. Tech Univ Munich Inst Aerodynam & Fluid Mech D-85748 Garching Germany
This work presents a data-driven approach to the identification of spatial and temporal truncation errors for linear and nonlinear discretization schemes of Partial Differential Equations (PDEs). Motivated by the cent... 详细信息
来源: 评论