咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 11 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 8 篇 力学(可授工学、理...
    • 4 篇 机械工程
    • 4 篇 动力工程及工程热...
    • 2 篇 计算机科学与技术...
    • 1 篇 石油与天然气工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 核科学与技术
  • 5 篇 理学
    • 3 篇 数学
    • 1 篇 物理学

主题

  • 11 篇 data-driven turb...
  • 3 篇 machine learning
  • 2 篇 neuralsst
  • 2 篇 large eddy simul...
  • 2 篇 galilean invaria...
  • 2 篇 unit invariance
  • 2 篇 rans
  • 1 篇 extrapolation
  • 1 篇 uncertainty quan...
  • 1 篇 reynolds-average...
  • 1 篇 deep learning
  • 1 篇 deep neural netw...
  • 1 篇 rotational and r...
  • 1 篇 ribbed two-pass ...
  • 1 篇 turbulent heat t...
  • 1 篇 differentiable s...
  • 1 篇 interpretable ma...
  • 1 篇 neural networks
  • 1 篇 reflectional inv...
  • 1 篇 rans closure

机构

  • 2 篇 univ colorado bo...
  • 2 篇 inst thermodynam...
  • 2 篇 univ stuttgart i...
  • 1 篇 univ shanghai sc...
  • 1 篇 univ colorado bo...
  • 1 篇 north carolina s...
  • 1 篇 german aerosp ct...
  • 1 篇 delft univ techn...
  • 1 篇 emory univ div r...
  • 1 篇 ball aerosp boul...
  • 1 篇 tsinghua univ de...
  • 1 篇 munich data sci ...
  • 1 篇 tech univ munich...
  • 1 篇 argonne natl lab...

作者

  • 4 篇 mandler hannes
  • 4 篇 weigand bernhard
  • 3 篇 jansen kenneth e...
  • 3 篇 evans john a.
  • 2 篇 prakash aviral
  • 1 篇 yuan xin
  • 1 篇 su xinrong
  • 1 篇 zhang weiran
  • 1 篇 dinh nam t.
  • 1 篇 jaeckel florian
  • 1 篇 parmar basu
  • 1 篇 dwight richard p...
  • 1 篇 khurana parv
  • 1 篇 doosta alireza
  • 1 篇 grabe cornelia
  • 1 篇 zhang zhen
  • 1 篇 koutsourelakis p...
  • 1 篇 agrawal atul
  • 1 篇 peters eric
  • 1 篇 fang jun

语言

  • 8 篇 英文
  • 3 篇 其他
检索条件"主题词=Data-driven turbulence modeling"
11 条 记 录,以下是1-10 订阅
排序:
data-driven turbulence modeling FOR FILM COOLING HEAT TRANSPORT, PART II: modeling AND EVALUATION  69
DATA-DRIVEN TURBULENCE MODELING FOR FILM COOLING HEAT TRANSP...
收藏 引用
69th ASME Turbomachinery Technical Conference and Exposition (ASME Turbo Expo) (GT)
作者: Zhang, Zhen Zhang, Weiran Su, Xinrong Yuan, Xin Tsinghua Univ Dept Energy & Power Engn Beijing Peoples R China Univ Shanghai Sci & Technol Shanghai Peoples R China
In film cooling problems, the turbulent heat transport and the resultant cooling effectiveness distribution are difficult to predict for traditional Reynolds-averaged Navier-Stokes (RANS) methods. In this paper, a dat... 详细信息
来源: 评论
On frozen-RANS approaches in data-driven turbulence modeling: Practical relevance of turbulent scale consistency during closure inference and application
收藏 引用
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW 2022年 97卷
作者: Mandler, Hannes Weigand, Bernhard Inst Thermodynam Luft & Raumfahrt Pfaffenwaldring 31 D-70569 Stuttgart Germany
This paper addresses a consistency problem in data-driven turbulence modeling, which arises as the hypotheses are inferred from high-fidelity data but evaluated within a low-fidelity RANS solver. After elaborating on ... 详细信息
来源: 评论
data-driven augmentation of a RANS turbulence model for transonic flow prediction
收藏 引用
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW 2023年 第4期33卷 1544-1561页
作者: Grabe, Cornelia Jaeckel, Florian Khurana, Parv Dwight, Richard P. German Aerosp Ctr DLR Inst Aerodynam & Flow Technol Gottingen Germany Delft Univ Technol Fac Aerosp Engn Delft Netherlands
Purpose This paper aims to improve Reynolds-averaged Navier Stokes (RANS) turbulence models using a data-driven approach based on machine learning (ML). A special focus is put on determining the optimal input features... 详细信息
来源: 评论
Generalization Limits of data-driven turbulence Models
收藏 引用
FLOW turbulence AND COMBUSTION 2024年 1-36页
作者: Mandler, Hannes Weigand, Bernhard Univ Stuttgart Inst Aerosp Thermodynam Pfaffenwaldring 31 D-70569 Stuttgart Germany
Many industrial applications require turbulent closure models that yield accurate predictions across a wide spectrum of flow regimes. In this study, we investigate how data-driven augmentations of popular eddy viscosi... 详细信息
来源: 评论
Feature importance in neural networks as a means of interpretation for data-driven turbulence models
收藏 引用
COMPUTERS & FLUIDS 2023年 第1期265卷
作者: Mandler, Hannes Weigand, Bernhard Univ Stuttgart Inst Aerosp Thermodynam Pfaffenwaldring 31 D-70569 Stuttgart Germany
This work aims at making the prediction process of neural network-based turbulence models more transparent. Due to its black-box ingredients, the model's predictions cannot be anticipated. Therefore, this paper is... 详细信息
来源: 评论
A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2024年 508卷
作者: Agrawal, Atul Koutsourelakis, Phaedon-Stelios Tech Univ Munich Professorship Data Driven Mat Modeling Sch Engn & Design Boltzmannstr 15 D-85748 Garching Germany Munich Data Sci Inst MDSI Coremember Garching Germany
We propose a data -driven, closure model for Reynolds -averaged Navier-Stokes (RANS) simulations that incorporates aleatoric, model uncertainty. The proposed closure consists of two parts. A parametric one, which util... 详细信息
来源: 评论
Invariant data-driven subgrid stress modeling on anisotropic grids for large eddy simulation
收藏 引用
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2024年 422卷
作者: Prakash, Aviral Jansen, Kenneth E. Evans, John A. Univ Colorado Boulder Boulder CO 80309 USA
We present a new approach for constructing data -driven subgrid stress models for large eddy simulation of turbulent flows using anisotropic grids. The key to our approach is a Galilean, rotationally, reflectionally a... 详细信息
来源: 评论
Reynolds-Averaged turbulence modeling Using Deep Learning with Local Flow Features: An Empirical Approach
收藏 引用
NUCLEAR SCIENCE AND ENGINEERING 2020年 第8-9期194卷 650-664页
作者: Chang, Chih-Wei Fang, Jun Dinh, Nam T. Emory Univ Div Radiat Oncol Atlanta GA 30322 USA Argonne Natl Lab Nucl Sci & Engn Div 9700 S Cass Ave Argonne IL 60439 USA North Carolina State Univ Dept Nucl Engn Raleigh NC 27607 USA
Reynolds-Averaged Navier-Stoke (RANS) models offer an alternative avenue in predicting flow characteristics when the corresponding experiments are difficult to achieve due to geometry complexity, limited budget, or kn... 详细信息
来源: 评论
Generalized Non-Linear Eddy Viscosity Models for data-Assisted Reynolds Stress Closure
Generalized Non-Linear Eddy Viscosity Models for Data-Assist...
收藏 引用
AIAA Science and Technology Forum and Exposition (AIAA SciTech)
作者: Parmar, Basu Peters, Eric Jansen, Kenneth E. Doosta, Alireza Evans, John A. Univ Colorado Boulder CO 80309 USA Ball Aerosp Boulder CO 80301 USA
Reynolds Averaged Navier Stokes (RANS) models are the most popular tool for modeling turbulent flow. RANS models require modeling of an unclosed term called the Reynolds stress tensor, but state-of-the-art Reynolds st... 详细信息
来源: 评论
Invariant data-driven subgrid stress modeling in the strain-rate eigenframe for large eddy simulation
收藏 引用
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2022年 399卷 1页
作者: Prakash, Aviral Jansen, Kenneth E. Evans, John A. Univ Colorado Boulder Boulder CO 80309 USA
We present a new approach for constructing data-driven subgrid stress models for large eddy simulation of turbulent flows. The key to our approach is representation of model input and output tensors in the filtered st... 详细信息
来源: 评论