咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 11 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 8 篇 力学(可授工学、理...
    • 4 篇 机械工程
    • 4 篇 动力工程及工程热...
    • 2 篇 计算机科学与技术...
    • 1 篇 石油与天然气工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 核科学与技术
  • 5 篇 理学
    • 3 篇 数学
    • 1 篇 物理学

主题

  • 11 篇 data-driven turb...
  • 3 篇 machine learning
  • 2 篇 neuralsst
  • 2 篇 large eddy simul...
  • 2 篇 galilean invaria...
  • 2 篇 unit invariance
  • 2 篇 rans
  • 1 篇 extrapolation
  • 1 篇 uncertainty quan...
  • 1 篇 reynolds-average...
  • 1 篇 deep learning
  • 1 篇 deep neural netw...
  • 1 篇 rotational and r...
  • 1 篇 ribbed two-pass ...
  • 1 篇 turbulent heat t...
  • 1 篇 differentiable s...
  • 1 篇 interpretable ma...
  • 1 篇 neural networks
  • 1 篇 reflectional inv...
  • 1 篇 rans closure

机构

  • 2 篇 univ colorado bo...
  • 2 篇 inst thermodynam...
  • 2 篇 univ stuttgart i...
  • 1 篇 univ shanghai sc...
  • 1 篇 univ colorado bo...
  • 1 篇 north carolina s...
  • 1 篇 german aerosp ct...
  • 1 篇 delft univ techn...
  • 1 篇 emory univ div r...
  • 1 篇 ball aerosp boul...
  • 1 篇 tsinghua univ de...
  • 1 篇 munich data sci ...
  • 1 篇 tech univ munich...
  • 1 篇 argonne natl lab...

作者

  • 4 篇 mandler hannes
  • 4 篇 weigand bernhard
  • 3 篇 jansen kenneth e...
  • 3 篇 evans john a.
  • 2 篇 prakash aviral
  • 1 篇 yuan xin
  • 1 篇 su xinrong
  • 1 篇 zhang weiran
  • 1 篇 dinh nam t.
  • 1 篇 jaeckel florian
  • 1 篇 parmar basu
  • 1 篇 dwight richard p...
  • 1 篇 khurana parv
  • 1 篇 doosta alireza
  • 1 篇 grabe cornelia
  • 1 篇 zhang zhen
  • 1 篇 koutsourelakis p...
  • 1 篇 agrawal atul
  • 1 篇 peters eric
  • 1 篇 fang jun

语言

  • 8 篇 英文
  • 3 篇 其他
检索条件"主题词=Data-driven turbulence modeling"
11 条 记 录,以下是1-10 订阅
排序:
data-driven turbulence modeling FOR FILM COOLING HEAT TRANSPORT, PART II: modeling AND EVALUATION  69
DATA-DRIVEN TURBULENCE MODELING FOR FILM COOLING HEAT TRANSP...
收藏 引用
69th ASME Turbomachinery Technical Conference and Exposition (ASME Turbo Expo) (GT)
作者: Zhang, Zhen Zhang, Weiran Su, Xinrong Yuan, Xin Tsinghua Univ Dept Energy & Power Engn Beijing Peoples R China Univ Shanghai Sci & Technol Shanghai Peoples R China
In film cooling problems, the turbulent heat transport and the resultant cooling effectiveness distribution are difficult to predict for traditional Reynolds-averaged Navier-Stokes (RANS) methods. In this paper, a dat... 详细信息
来源: 评论
On frozen-RANS approaches in data-driven turbulence modeling: Practical relevance of turbulent scale consistency during closure inference and application
收藏 引用
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW 2022年 97卷
作者: Mandler, Hannes Weigand, Bernhard Inst Thermodynam Luft & Raumfahrt Pfaffenwaldring 31 D-70569 Stuttgart Germany
This paper addresses a consistency problem in data-driven turbulence modeling, which arises as the hypotheses are inferred from high-fidelity data but evaluated within a low-fidelity RANS solver. After elaborating on ... 详细信息
来源: 评论
Generalization Limits of data-driven turbulence Models
收藏 引用
FLOW turbulence AND COMBUSTION 2024年 1-36页
作者: Mandler, Hannes Weigand, Bernhard Univ Stuttgart Inst Aerosp Thermodynam Pfaffenwaldring 31 D-70569 Stuttgart Germany
Many industrial applications require turbulent closure models that yield accurate predictions across a wide spectrum of flow regimes. In this study, we investigate how data-driven augmentations of popular eddy viscosi... 详细信息
来源: 评论
data-driven augmentation of a RANS turbulence model for transonic flow prediction
收藏 引用
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW 2023年 第4期33卷 1544-1561页
作者: Grabe, Cornelia Jaeckel, Florian Khurana, Parv Dwight, Richard P. German Aerosp Ctr DLR Inst Aerodynam & Flow Technol Gottingen Germany Delft Univ Technol Fac Aerosp Engn Delft Netherlands
Purpose This paper aims to improve Reynolds-averaged Navier Stokes (RANS) turbulence models using a data-driven approach based on machine learning (ML). A special focus is put on determining the optimal input features... 详细信息
来源: 评论
A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2024年 508卷
作者: Agrawal, Atul Koutsourelakis, Phaedon-Stelios Tech Univ Munich Professorship Data Driven Mat Modeling Sch Engn & Design Boltzmannstr 15 D-85748 Garching Germany Munich Data Sci Inst MDSI Coremember Garching Germany
We propose a data -driven, closure model for Reynolds -averaged Navier-Stokes (RANS) simulations that incorporates aleatoric, model uncertainty. The proposed closure consists of two parts. A parametric one, which util... 详细信息
来源: 评论
Invariant data-driven subgrid stress modeling on anisotropic grids for large eddy simulation
收藏 引用
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2024年 422卷
作者: Prakash, Aviral Jansen, Kenneth E. Evans, John A. Univ Colorado Boulder Boulder CO 80309 USA
We present a new approach for constructing data -driven subgrid stress models for large eddy simulation of turbulent flows using anisotropic grids. The key to our approach is a Galilean, rotationally, reflectionally a... 详细信息
来源: 评论
Feature importance in neural networks as a means of interpretation for data-driven turbulence models
收藏 引用
COMPUTERS & FLUIDS 2023年 第1期265卷
作者: Mandler, Hannes Weigand, Bernhard Univ Stuttgart Inst Aerosp Thermodynam Pfaffenwaldring 31 D-70569 Stuttgart Germany
This work aims at making the prediction process of neural network-based turbulence models more transparent. Due to its black-box ingredients, the model's predictions cannot be anticipated. Therefore, this paper is... 详细信息
来源: 评论
Invariant data-driven subgrid stress modeling in the strain-rate eigenframe for large eddy simulation
收藏 引用
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2022年 399卷 1页
作者: Prakash, Aviral Jansen, Kenneth E. Evans, John A. Univ Colorado Boulder Boulder CO 80309 USA
We present a new approach for constructing data-driven subgrid stress models for large eddy simulation of turbulent flows. The key to our approach is representation of model input and output tensors in the filtered st... 详细信息
来源: 评论
A realizable and scale-consistent data-driven non-linear eddy viscosity modeling framework for arbitrary regression algorithms
收藏 引用
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW 2022年 97卷
作者: Mandler, Hannes Weigand, Bernhard Inst Thermodynam Luft & Raumfahrt Pfaffenwaldring 31 D-70569 Stuttgart Germany
A data-driven modeling framework for non-linear eddy viscosity models is presented. In contrast to the majority of similar approaches, it splits the multivariate regression problem into a set of univariate problems an... 详细信息
来源: 评论
Reynolds-Averaged turbulence modeling Using Deep Learning with Local Flow Features: An Empirical Approach
收藏 引用
NUCLEAR SCIENCE AND ENGINEERING 2020年 第8-9期194卷 650-664页
作者: Chang, Chih-Wei Fang, Jun Dinh, Nam T. Emory Univ Div Radiat Oncol Atlanta GA 30322 USA Argonne Natl Lab Nucl Sci & Engn Div 9700 S Cass Ave Argonne IL 60439 USA North Carolina State Univ Dept Nucl Engn Raleigh NC 27607 USA
Reynolds-Averaged Navier-Stoke (RANS) models offer an alternative avenue in predicting flow characteristics when the corresponding experiments are difficult to achieve due to geometry complexity, limited budget, or kn... 详细信息
来源: 评论