咨询与建议

限定检索结果

文献类型

  • 52 篇 期刊文献
  • 22 篇 会议

馆藏范围

  • 74 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 72 篇 工学
    • 34 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 16 篇 控制科学与工程
    • 10 篇 仪器科学与技术
    • 10 篇 信息与通信工程
    • 5 篇 机械工程
    • 4 篇 测绘科学与技术
    • 4 篇 软件工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 土木工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 水利工程
    • 1 篇 化学工程与技术
    • 1 篇 船舶与海洋工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物工程
  • 9 篇 理学
    • 3 篇 物理学
    • 2 篇 数学
    • 2 篇 地球物理学
    • 2 篇 生物学
    • 1 篇 化学
    • 1 篇 系统科学
  • 7 篇 医学
    • 6 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 6 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 2 篇 农学
    • 1 篇 作物学
    • 1 篇 农业资源与环境

主题

  • 74 篇 deep auto-encode...
  • 10 篇 deep learning
  • 4 篇 fault diagnosis
  • 4 篇 anomaly detectio...
  • 4 篇 machine learning
  • 4 篇 unsupervised lea...
  • 3 篇 clustering
  • 3 篇 rolling bearing
  • 3 篇 transfer learnin...
  • 3 篇 semi-supervised ...
  • 3 篇 feature extracti...
  • 2 篇 intrusion detect...
  • 2 篇 synthetic apertu...
  • 2 篇 video anomaly de...
  • 2 篇 blahut-arimoto a...
  • 2 篇 intelligent faul...
  • 2 篇 abnormal detecti...
  • 2 篇 dimensionality r...
  • 2 篇 pose-induced
  • 2 篇 rate distortion

机构

  • 3 篇 chinese acad sci...
  • 3 篇 univ chinese aca...
  • 2 篇 jiangnan univ sc...
  • 2 篇 jiangnan univ ji...
  • 2 篇 harbin inst tech...
  • 2 篇 univ michigan de...
  • 2 篇 huazhong univ sc...
  • 2 篇 north china elec...
  • 2 篇 western digital ...
  • 2 篇 univ elect sci &...
  • 2 篇 xidian univ sch ...
  • 2 篇 nanjing univ sci...
  • 2 篇 univ michigan mi...
  • 1 篇 purdue univ sch ...
  • 1 篇 univ sci & techn...
  • 1 篇 minist educ engn...
  • 1 篇 tsinghua univ de...
  • 1 篇 nanjing tech uni...
  • 1 篇 psg coll technol...
  • 1 篇 southwest jiaoto...

作者

  • 3 篇 liu yang
  • 3 篇 song wei
  • 2 篇 kong xianguang
  • 2 篇 zhao shuyuan
  • 2 篇 hu ruimin
  • 2 篇 zeng xinhua
  • 2 篇 zhang yuyan
  • 2 篇 kang zhao
  • 2 篇 xu zenglin
  • 2 篇 wang xiaochen
  • 2 篇 lu xiao
  • 2 篇 chen yang
  • 2 篇 li qing
  • 2 篇 sang yafei
  • 2 篇 li wei
  • 2 篇 wang qibin
  • 2 篇 cheng kai
  • 2 篇 gao liang
  • 2 篇 li peigen
  • 2 篇 li xinyu

语言

  • 73 篇 英文
  • 1 篇 其他
检索条件"主题词=Deep Auto-Encoder"
74 条 记 录,以下是31-40 订阅
排序:
Multi-view deep unsupervised transfer leaning via joint auto-encoder coupled with dictionary learning
收藏 引用
INTELLIGENT DATA ANALYSIS 2019年 第3期23卷 555-571页
作者: Diasse, Abdoullahi Li, Zhiyong Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Hunan Peoples R China
Transfer learning empowers machine learning algorithms the ability to train a model on a given task, capture the existing relationship in the data and reuse it for another task in the same or similar domain. In this p... 详细信息
来源: 评论
A multi-ensemble method based on deep auto-encoders for fault diagnosis of rolling bearings
收藏 引用
MEASUREMENT 2020年 151卷 107132-000页
作者: Kong, Xianguang Mao, Gang Wang, Qibin Ma, Hongbo Yang, Wen Xidian Univ Sch Mechanoelect Engn Xian 710071 Shaanxi Peoples R China Jiangsu Jinxiang Transmiss Equipment Co Ltd Huaian 223001 Peoples R China
A multi-ensemble method is proposed based on deep auto-encoder (DAE) for fault diagnosis of rolling bearings. At first, several DAEs with different activation functions are trained to obtain different types of feature... 详细信息
来源: 评论
A new subset based deep feature learning method for intelligent fault diagnosis of bearing
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2018年 110卷 125-142页
作者: Zhang, Yuyan Li, Xinyu Gao, Liang Li, Peigen Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Hubei Peoples R China
Intelligent fault diagnosis has attracted considerable attention due to its ability in effectively processing massive data and rapidly providing diagnosis results. However, in the traditional intelligent diagnosis met... 详细信息
来源: 评论
A Method for Guaranteeing Wireless Communication Based on a Combination of deep and Shallow Learning
收藏 引用
IEEE ACCESS 2019年 7卷 38688-38695页
作者: Tian, Qiao Li, Jingmei Liu, Haibo Harbin Engn Univ Coll Comp Sci & Technol Harbin 150001 Heilongjiang Peoples R China
Wireless communication has changed and improved people's lives and society, especially with the arrival of the Internet of Things (IoT) era. Despite the maturity of wireless communication, the security issue of co... 详细信息
来源: 评论
deep Hashing and Sparse Representation of Abnormal Events Detection
收藏 引用
COMPUTER JOURNAL 2024年 第1期67卷 3-17页
作者: Gnouma, Mariem Ejbali, Ridha Zaied, Mourad Univ Gabes Natl Engn Sch Gabes Res Team Intelligent Machines St Omar Ibn Khattab Zrig Eddakhlania Gabes 6029 Tunisia Fac Sci Gabes Dept Comp Sci Gabes 6072 Tunisia
Due to its widespread application in the field of public security, anomaly detection in crowd scenes has recently become a hot topic. Some deep learning-based methods led to significant accomplishments in this field. ... 详细信息
来源: 评论
Robust deep auto-encoding Gaussian process regression for unsupervised anomaly detection
收藏 引用
NEUROCOMPUTING 2020年 376卷 180-190页
作者: Fan, Jinan Zhang, Qianru Zhu, Jialei Zhang, Meng Yang, Zhou Cao, Hanxiang Southeast Univ Natl ASIC Syst Engn Technol Res Ctr Nanjing Jiangsu Peoples R China
Unsupervised anomaly detection (AD) is of great importance in both fundamental machine learning researches and industrial applications. Previous approaches have achieved great advance in improving the performance of u... 详细信息
来源: 评论
Extracting Spectral Features Using deep autoencoders With Binary Distributed Hidden Units for Statistical Parametric Speech Synthesis
收藏 引用
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 2018年 第4期26卷 713-724页
作者: Hu, Ya-Jun Ling, Zhen-Hua Univ Sci & Technol China Natl Engn Lab Speech & Language Informat Proc Hefei 230027 Anhui Peoples R China
This paper presents a spectral feature extraction method using deep autoencoders (DAEs) with binary distributed hidden units (BDAE) for statistical parametric speech synthesis (SPSS). Conventional DAEs are trained to ... 详细信息
来源: 评论
FunkR-pDAE: Personalized Project Recommendation Using deep Learning
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 2021年 第2期9卷 886-900页
作者: Zhang, Pengcheng Xiong, Fang Leung, Hareton Song, Wei Hohai Univ Coll Comp & Informat Nanjing 211100 Peoples R China Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China
In open source communities, developers always need to spend plenty of time and energy on discovering specific projects from massive open source projects. Consequently, the study of personalized project recommendation ... 详细信息
来源: 评论
Single-cell RNA-seq data clustering by deep information fusion
收藏 引用
BRIEFINGS IN FUNCTIONAL GENOMICS 2024年 第2期23卷 128-137页
作者: Ren, Liangrui Wang, Jun Li, Wei Guo, Maozu Yu, Guoxian Shandong Univ Sch Software Jinan 250101 Peoples R China Shandong Univ Sch Software Jinan Peoples R China Shandong Univ Joint SDU NTU Ctr Artificial Intelligence Res C FA Jinan Peoples R China Shandong Univ Sch Control Sci & Engn Jinan Peoples R China Beijing Univ Civil Engn & Architecture Sch Elect & Informat Engn Beijing Peoples R China
Determining cell types by single-cell transcriptomics data is fundamental for downstream analysis. However, cell clustering and data imputation still face the computation challenges, due to the high dropout rate, spar... 详细信息
来源: 评论
Compression by and for deep Boltzmann Machines
收藏 引用
IEEE TRANSACTIONS ON COMMUNICATIONS 2020年 第12期68卷 7498-7510页
作者: Li, Qing Chen, Yang Kim, Yongjune Western Digital Res Milpitas CA 95035 USA Univ Michigan Dept Stat Ann Arbor MI 48109 USA Univ Michigan Michigan Inst Data Sci Ann Arbor MI 48109 USA Daegu Gyeongbuk Inst Sci & Technol DGIST Dept Informat & Commun Engn Daegu 42988 South Korea
We answer two questions in this work: what deep Boltzmann Machines (DBMs) can do for compression and vise versa. We show that (1) DBMs can be applied to learn the rate distortion approaching posterior as in the Blahut... 详细信息
来源: 评论