咨询与建议

限定检索结果

文献类型

  • 52 篇 期刊文献
  • 22 篇 会议

馆藏范围

  • 74 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 72 篇 工学
    • 34 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 16 篇 控制科学与工程
    • 10 篇 仪器科学与技术
    • 10 篇 信息与通信工程
    • 5 篇 机械工程
    • 4 篇 测绘科学与技术
    • 4 篇 软件工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 土木工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 水利工程
    • 1 篇 化学工程与技术
    • 1 篇 船舶与海洋工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物工程
  • 9 篇 理学
    • 3 篇 物理学
    • 2 篇 数学
    • 2 篇 地球物理学
    • 2 篇 生物学
    • 1 篇 化学
    • 1 篇 系统科学
  • 7 篇 医学
    • 6 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 6 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 2 篇 农学
    • 1 篇 作物学
    • 1 篇 农业资源与环境

主题

  • 74 篇 deep auto-encode...
  • 10 篇 deep learning
  • 4 篇 fault diagnosis
  • 4 篇 anomaly detectio...
  • 4 篇 machine learning
  • 4 篇 unsupervised lea...
  • 3 篇 clustering
  • 3 篇 rolling bearing
  • 3 篇 transfer learnin...
  • 3 篇 semi-supervised ...
  • 3 篇 feature extracti...
  • 2 篇 intrusion detect...
  • 2 篇 synthetic apertu...
  • 2 篇 video anomaly de...
  • 2 篇 blahut-arimoto a...
  • 2 篇 intelligent faul...
  • 2 篇 abnormal detecti...
  • 2 篇 dimensionality r...
  • 2 篇 pose-induced
  • 2 篇 rate distortion

机构

  • 3 篇 chinese acad sci...
  • 3 篇 univ chinese aca...
  • 2 篇 jiangnan univ sc...
  • 2 篇 jiangnan univ ji...
  • 2 篇 harbin inst tech...
  • 2 篇 univ michigan de...
  • 2 篇 huazhong univ sc...
  • 2 篇 north china elec...
  • 2 篇 western digital ...
  • 2 篇 univ elect sci &...
  • 2 篇 xidian univ sch ...
  • 2 篇 nanjing univ sci...
  • 2 篇 univ michigan mi...
  • 1 篇 purdue univ sch ...
  • 1 篇 univ sci & techn...
  • 1 篇 minist educ engn...
  • 1 篇 tsinghua univ de...
  • 1 篇 nanjing tech uni...
  • 1 篇 psg coll technol...
  • 1 篇 southwest jiaoto...

作者

  • 3 篇 liu yang
  • 3 篇 song wei
  • 2 篇 kong xianguang
  • 2 篇 zhao shuyuan
  • 2 篇 hu ruimin
  • 2 篇 zeng xinhua
  • 2 篇 zhang yuyan
  • 2 篇 kang zhao
  • 2 篇 xu zenglin
  • 2 篇 wang xiaochen
  • 2 篇 lu xiao
  • 2 篇 chen yang
  • 2 篇 li qing
  • 2 篇 sang yafei
  • 2 篇 li wei
  • 2 篇 wang qibin
  • 2 篇 cheng kai
  • 2 篇 gao liang
  • 2 篇 li peigen
  • 2 篇 li xinyu

语言

  • 73 篇 英文
  • 1 篇 其他
检索条件"主题词=Deep Auto-Encoder"
74 条 记 录,以下是41-50 订阅
排序:
Towards Early Diagnosis Of Parkinson's Disease Through Speech Signals' Analysis Based on Advanced deep Learning Techniques  7
Towards Early Diagnosis Of Parkinson's Disease Through Speec...
收藏 引用
IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP)
作者: Qahmash, Ayman AlQahtani, Basmah Misfer King Khalid Univ Informat & Comp Syst Dept Abha Saudi Arabia
The utilization of Artificial Intelligence 'AI' techniques for analyzing speech signals is so promising nowadays especially for various medical applications. In our proposed research, dealing with early diagno... 详细信息
来源: 评论
A deep Learning Method for Rough Surface Clutter Reduction in GPR Image
A Deep Learning Method for Rough Surface Clutter Reduction i...
收藏 引用
IEEE Radar Conference (RadarConf)
作者: Zhang, Yan Huston, Dryver Xia, Tian Univ Vermont Burlington VT 05405 USA
The major clutter in a typical ground penetrating radar (GPR) B-scan image is the ground surface clutter. It can severely obscure or distort the subsurface target response, especially when the surface profile variatio... 详细信息
来源: 评论
A New Cooperative deep Learning Method for Underwater Acoustic Target Recognition
A New Cooperative Deep Learning Method for Underwater Acoust...
收藏 引用
OCEANS - Marseille Conference
作者: Yang, Honghui Xu, Guanghui Yi, Shuzhen Li, Yiqing Northwestern Polytech Univ Sch Marine Sci & Technol Xian Peoples R China
Underwater acoustic target recognition is a difficult task due to the complicated and changeable environment. In this paper, a new cooperative deep learning method is proposed to get a better result. This new method c... 详细信息
来源: 评论
Towards Unknown Traffic Identification via Embeddings and deep autoencoders  26
Towards Unknown Traffic Identification via Embeddings and De...
收藏 引用
26th International Conference on Telecommunications (ICT)
作者: Zhao, Shuyuan Zhang, Yongzheng Sang, Yafei Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China
Traffic classification, as a fundamental tool for network management and security, is suffering from a critical problem, namely "unknown traffic". The unknown traffic is defined as network traffic generated ... 详细信息
来源: 评论
Learning to Compress Using deep autoencoder  57
Learning to Compress Using Deep AutoEncoder
收藏 引用
57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
作者: Li, Qing Chen, Yang Western Digital Res Milpitas CA 95035 USA Univ Michigan Dept Stat Ann Arbor MI 48109 USA Univ Michigan Michigan Inst Data Sci Ann Arbor MI 48109 USA
A novel deep learning framework for lossy compression is proposed. The framework is based on deep autoencoder (DAE) stacked of Restricted Boltzmann Machines (RBMs), which form deep Belief Networks (DBNs). The proposed... 详细信息
来源: 评论
deep Learning-Based Dependability Assessment Method for Industrial Wireless Network  5th
Deep Learning-Based Dependability Assessment Method for Indu...
收藏 引用
5th IFAC Symposium on Telematics Applications (TA)
作者: Sun, Danfeng Willmann, Sarah Inst F Automat & Kommunikat eV D-39106 Magdeburg Germany
Techniques on 5G and Internet of things bring a strong potential paradigm shift to wireless communication applications in industrial domain. Hence, there is a strong need for quantitative dependability assessment in t... 详细信息
来源: 评论
Structure learning with similarity preserving
收藏 引用
NEURAL NETWORKS 2020年 129卷 138-148页
作者: Kang, Zhao Lu, Xiao Lu, Yiwei Peng, Chong Chen, Wenyu Xu, Zenglin Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Sichuan Peoples R China Qingdao Univ Coll Comp Sci & Technol Qingdao 266071 Peoples R China Harbin Inst Technol Sch Comp Sci & Technol Shenzhen Peoples R China
Leveraging on the underlying low-dimensional structure of data, low-rank and sparse modeling approaches have achieved great success in a wide range of applications. However, in many applications the data can display s... 详细信息
来源: 评论
A novel performance degradation prognostics approach and its application on ball screw
收藏 引用
MEASUREMENT 2022年 195卷
作者: Zhang, Xiaochen Luo, Tianjian Han, Te Gao, Hongli Fujian Normal Univ Coll Comp & Cyber Secur Fuzhou 350117 Fujian Peoples R China Minist Educ Engn Res Ctr Adv Energy Saving Driving Technol Chengdu 610031 Sichuan Peoples R China Tsinghua Univ Dept Ind Engn Beijing 100084 Peoples R China Southwest Jiaotong Univ Sch Mech Engn Chengdu 610031 Sichuan Peoples R China
The performance degradation prognostics of ball screw means important economic value and engineering application prospect. This paper proposes a performance degradation prognostics method which can be applied on ball ... 详细信息
来源: 评论
Relation-Guided Representation Learning
收藏 引用
NEURAL NETWORKS 2020年 131卷 93-102页
作者: Kang, Zhao Lu, Xiao Liang, Jian Bai, Kun Xu, Zenglin Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu Sichuan Peoples R China Trusted Cloud Comp & Big Data Key Lab Sichuan Pro Chengdu Sichuan Peoples R China Tencent Cloud & Smart Ind Grp Beijing Peoples R China Harbin Inst Technol Sch Comp Sci & Technol Shenzhen Peoples R China Peng Cheng Lab Ctr Artificial Intelligence Shenzhen Peoples R China
deep auto-encoders (DAEs) have achieved great success in learning data representations via the powerful representability of neural networks. But most DAEs only focus on the most dominant structures which are able to r... 详细信息
来源: 评论
Learning Graph Enhanced Spatial-Temporal Coherence for Video Anomaly Detection
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2023年 30卷 314-318页
作者: Cheng, Kai Liu, Yang Zeng, Xinhua Fudan Univ Acad Engn & Technol Shanghai 200433 Peoples R China
Video Anomaly Detection (VAD) is a critical yet challenging task in the signal processing community. Since part abnormal events cannot be detected by analyzing spatial or temporal information alone, learning spatial-t... 详细信息
来源: 评论