咨询与建议

限定检索结果

文献类型

  • 154 篇 期刊文献
  • 84 篇 会议

馆藏范围

  • 238 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 223 篇 工学
    • 148 篇 计算机科学与技术...
    • 80 篇 电气工程
    • 26 篇 控制科学与工程
    • 26 篇 软件工程
    • 23 篇 信息与通信工程
    • 15 篇 仪器科学与技术
    • 12 篇 机械工程
    • 8 篇 电子科学与技术(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 安全科学与工程
    • 3 篇 动力工程及工程热...
    • 3 篇 建筑学
    • 2 篇 光学工程
  • 45 篇 理学
    • 19 篇 生物学
    • 10 篇 物理学
    • 9 篇 数学
    • 9 篇 化学
    • 4 篇 地球物理学
    • 3 篇 地质学
  • 27 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 26 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 4 篇 特种医学
  • 6 篇 农学
  • 4 篇 经济学
    • 3 篇 应用经济学
    • 2 篇 理论经济学
  • 3 篇 法学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 238 篇 deep autoencoder
  • 29 篇 deep learning
  • 24 篇 anomaly detectio...
  • 24 篇 feature extracti...
  • 9 篇 machine learning
  • 7 篇 transfer learnin...
  • 7 篇 deep neural netw...
  • 7 篇 fault detection
  • 7 篇 unsupervised lea...
  • 6 篇 fault diagnosis
  • 6 篇 dimensionality r...
  • 6 篇 neural networks
  • 6 篇 convolutional ne...
  • 5 篇 reinforcement le...
  • 5 篇 deep neural netw...
  • 4 篇 representation l...
  • 4 篇 random forest
  • 4 篇 graph regulariza...
  • 4 篇 multi-view clust...
  • 4 篇 prediction

机构

  • 4 篇 tampere univ uni...
  • 4 篇 univ chinese aca...
  • 3 篇 jozef stefan ins...
  • 2 篇 univ chinese aca...
  • 2 篇 giet univ sch en...
  • 2 篇 guizhou univ sch...
  • 2 篇 guangxi univ sch...
  • 2 篇 princess nourah ...
  • 2 篇 xi an jiao tong ...
  • 2 篇 northwestern pol...
  • 2 篇 univ sydney busi...
  • 2 篇 tulane univ ctr ...
  • 2 篇 emory univ atlan...
  • 2 篇 sejong univ
  • 2 篇 inst appl math &...
  • 2 篇 univ oviedo elec...
  • 2 篇 hunan normal uni...
  • 2 篇 belarusian state...
  • 2 篇 natl univ def te...
  • 2 篇 tulane univ dept...

作者

  • 4 篇 mishra krishna m...
  • 4 篇 huhtala kalevi j...
  • 3 篇 diaz ignacio
  • 3 篇 loncarevic zvezd...
  • 3 篇 gams andrej
  • 3 篇 krogerus tomi r.
  • 2 篇 wei hong-quan
  • 2 篇 bilodeau guillau...
  • 2 篇 roy pankaj raj
  • 2 篇 lam fan
  • 2 篇 gao junbin
  • 2 篇 hussain tanveer
  • 2 篇 xiang yang
  • 2 篇 pan yu
  • 2 篇 pan zhisong
  • 2 篇 petrovsky alexan...
  • 2 篇 naeini saeed sav...
  • 2 篇 nayak dillip ran...
  • 2 篇 liu liu
  • 2 篇 becker martin

语言

  • 231 篇 英文
  • 5 篇 其他
  • 1 篇 法文
  • 1 篇 朝鲜文
  • 1 篇 中文
检索条件"主题词=Deep Autoencoder"
238 条 记 录,以下是201-210 订阅
排序:
Accelerating Robot Reinforcement Learning with Accumulation of Knowledge
Accelerating Robot Reinforcement Learning with Accumulation ...
收藏 引用
30th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD)
作者: Loncarevic, Zvezdan Gams, Andrej Jozef Stefan Inst Jamova Cesta 39 Ljubljana 1000 Slovenia Jozef Stefan Int Postgrad Sch Jamova Cesta 39 Ljubljana 1000 Slovenia
Reinforcement Learning (RL) can be applied in robotics to refine robot skills, but it may take several tens or even hundreds of attempts, which are typically just forgotten. In this paper, we show how all learning att... 详细信息
来源: 评论
Fast Data Driven Estimation of Cluster Number in Multiplex Images using Embedded Density Outliers
Fast Data Driven Estimation of Cluster Number in Multiplex I...
收藏 引用
IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (IEEE CIBCB)
作者: Thomas, Spencer Angus Univ Surrey Dept Comp Sci Guildford Surrey England Natl Phys Lab NPL Data Sci Teddington Middx England
The usage of chemical imaging technologies is becoming a routine accompaniment to traditional methods in pathology. Significant technological advances have developed these next generation techniques to provide rich, s... 详细信息
来源: 评论
Ensemble of DAEs for Fault Detection of Gas Turbine Engines  4
Ensemble of DAEs for Fault Detection of Gas Turbine Engines
收藏 引用
4th International Conference on System Reliability and Safety Engineering (SRSE)
作者: Ma, Shuai Wu, Yafeng Zheng, Hua Northwestern Polytech Univ Power & Energy Coll Xian Peoples R China
Aiming at the problem of limited fault-type samples, an ensemble of deep autoencoders (DAE) based fault detection approach for gas turbine engines was proposed. The proposed structure first transferred the measurement... 详细信息
来源: 评论
Learning deep Embedding for Community Detection
Learning Deep Embedding for Community Detection
收藏 引用
International Conference on Big Data and Artificial Intelligence and Software Engineering (ICBASE)
作者: Pan, Yu Yang, Jiupeng Wang, Shuaihui Zou, Junhua Hu, Guyu Pan, Zhisong Army Engn Univ Nanjing Peoples R China Natl Univ Def Technol Changsha Peoples R China
Community detection is a classic and challenging network analysis task. Inspired by the similarity between autoencoder and modularity maximization model in terms of a low-dimensional approximation of the modularity ma... 详细信息
来源: 评论
GTDNN-Based Voice Conversion Using DAEs with Binary Distributed Hidden Units  11
GTDNN-Based Voice Conversion Using DAEs with Binary Distribu...
收藏 引用
11th International Symposium on Chinese Spoken Language Processing (ISCSLP)
作者: Ding, Yi-Yang Hu, Ya-Jun Ling, Zhen-Hua Univ Sci & Technol China Natl Engn Lab Speech & Language Informat Proc Hefei Anhui Peoples R China
This paper proposes a method that adopts deep autoencoders with binary distributed hidden units (BDAE) as feature extractors in generatively trained DNNs (GTDNN) for voice conversion (VC). In this method, the source a... 详细信息
来源: 评论
Enhancing IoT Security: Federated Learning with GANs for Effective Attack Detection  20
Enhancing IoT Security: Federated Learning with GANs for Eff...
收藏 引用
20th International Bhurban Conference on Applied Sciences and Technology (IBCAST)
作者: Saeed, Bakhtawar Arshad, Sobia Saeed, Sanay Muhammad Umar Azam, Muhammad Awais UET Taxila Comp Engn Dept Taxila Pakistan UET Taxila Natl Ctr Cyber Secur NCCS Deep Packet Inspect Lab DPI Taxila Pakistan Whitecliffe Sch Informat Technol Technol Innovat Res Grp Auckland New Zealand
The rapid proliferation of the Internet of Things (IoT) has given rise to security challenges, necessitating the real-time detection and mitigation of cyberattacks. Federated Learning (FL) is promising because it enab... 详细信息
来源: 评论
deep Anomaly Detection on Attributed Networks  19
Deep Anomaly Detection on Attributed Networks
收藏 引用
SIAM International Conference on Data Mining (SDM)
作者: Ding, Kaize Li, Jundong Bhanushali, Rohit Liu, Huan Arizona State Univ Comp Sci & Engn Tempe AZ 85281 USA
Attributed networks are ubiquitous and form a critical component of modern information infrastructure, where additional node attributes complement the raw network structure in knowledge discovery. Recently, detecting ... 详细信息
来源: 评论
TOINet: Transfer Learning from Overt Speech- to Imagined Speech-Based EEG Signals with Convolutional autoencoder
TOINet: Transfer Learning from Overt Speech- to Imagined Spe...
收藏 引用
2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
作者: Lee, Dae-Hyeok Kim, Sung-Jin Han, Hyeon-Taek Lee, Seong-Whan Korea University Department of Brain and Cognitive Engineering Seoul Korea Republic of Korea University The Department of Artificial Intelligence Seoul Korea Republic of
Brain-computer interface (BCI) enables the communication between humans and devices by reflecting humans' intentions and status. Endogenous BCI is the imagined-based BCI and it has the advantage that the fatigue l... 详细信息
来源: 评论
Automatic Character Motion Style Transfer via autoencoder Generative Model and Spatio-Temporal Correlation Mining  2nd
Automatic Character Motion Style Transfer via Autoencoder Ge...
收藏 引用
2nd CCF Chinese Conference on Computer Vision (CCCV)
作者: Hu, Dong Liu, Xin Peng, Shujuan Zhong, Bineng Du, Jixiang Huaqiao Univ Dept Comp Sci Xiamen 361021 Peoples R China Huaqiao Univ Xiamen Key Lab Comp Vis & Pattern Recognit Xiamen 361021 Peoples R China
The style of motion is essential for virtual characters animation, and it is significant to generate motion style efficiently in computer animation. In this paper, we present an efficient approach to automatically tra... 详细信息
来源: 评论
Adversarially Learned Abnormal Trajectory Classifier  16
Adversarially Learned Abnormal Trajectory Classifier
收藏 引用
16th Conference on Computer and Robot Vision (CRV)
作者: Roy, Pankaj Raj Bilodeau, Guillaume-Alexandre Polytech Montreal LITIV Lab Montreal PQ Canada
We address the problem of abnormal event detection from trajectory data. In this paper, a new adversarial approach is proposed for building a deep neural network binary classifier, trained in an unsupervised fashion, ... 详细信息
来源: 评论