咨询与建议

限定检索结果

文献类型

  • 23 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 41 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 37 篇 工学
    • 23 篇 计算机科学与技术...
    • 13 篇 电气工程
    • 8 篇 控制科学与工程
    • 7 篇 信息与通信工程
    • 5 篇 仪器科学与技术
    • 4 篇 软件工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 生物工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 网络空间安全
  • 9 篇 理学
    • 5 篇 生物学
    • 3 篇 物理学
    • 3 篇 化学
    • 1 篇 地球物理学
  • 8 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 2 篇 农学
    • 1 篇 作物学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 41 篇 deep convolution...
  • 8 篇 deep learning
  • 4 篇 machine learning
  • 3 篇 generative adver...
  • 3 篇 image generation
  • 3 篇 convolutional ne...
  • 2 篇 street view hous...
  • 2 篇 synthetic image ...
  • 2 篇 unsupervised rep...
  • 2 篇 plant disease
  • 2 篇 bio-inspired des...
  • 2 篇 bamboo epidermis
  • 2 篇 image processing
  • 2 篇 fracture toughne...
  • 2 篇 particle-reinfor...
  • 1 篇 alzheimer's dise...
  • 1 篇 gaussian process...
  • 1 篇 mammography
  • 1 篇 discriminator we...
  • 1 篇 intraday electri...

机构

  • 1 篇 mcmaster univ sc...
  • 1 篇 jiangsu saideli ...
  • 1 篇 riphah int univ ...
  • 1 篇 ltd.
  • 1 篇 tsinghua univ sc...
  • 1 篇 univ las palmas ...
  • 1 篇 univ pretoria ct...
  • 1 篇 wuhan polytech u...
  • 1 篇 jntuh vignana bh...
  • 1 篇 sci & technol co...
  • 1 篇 univ lancaster d...
  • 1 篇 panimalar engn c...
  • 1 篇 mcgill univ dept...
  • 1 篇 syracuse univ de...
  • 1 篇 syracuse univ la...
  • 1 篇 the bioinspired ...
  • 1 篇 china univ petr ...
  • 1 篇 vit tall orlando...
  • 1 篇 jfe steel steel ...
  • 1 篇 univ chinese aca...

作者

  • 1 篇 huang qi-xian
  • 1 篇 wang guochao
  • 1 篇 bouridane ahmed
  • 1 篇 wu chengmao
  • 1 篇 zacharia paraske...
  • 1 篇 zhang honglei
  • 1 篇 yuan zi-qing
  • 1 篇 bedair khaled
  • 1 篇 shim hyunjung
  • 1 篇 kim gihun
  • 1 篇 cheng long
  • 1 篇 li y. h.
  • 1 篇 shen day-fann
  • 1 篇 wu min
  • 1 篇 ye jianqiao
  • 1 篇 yoo seunghwan
  • 1 篇 dissanayake mahe...
  • 1 篇 sun jiahui
  • 1 篇 phung b. t.
  • 1 篇 cheng xinyu

语言

  • 41 篇 英文
检索条件"主题词=Deep Convolutional Generative Adversarial Networks"
41 条 记 录,以下是1-10 订阅
排序:
deep convolutional generative adversarial networks to Enhance Artificial Intelligence in Healthcare: A Skin Cancer Application
收藏 引用
SENSORS 2022年 第16期22卷 42-45页
作者: La Salvia, Marco Torti, Emanuele Leon, Raquel Fabelo, Himar Ortega, Samuel Martinez-Vega, Beatriz Callico, Gustavo M. Leporati, Francesco Univ Pavia Dept Elect Comp & Biomed Engn I-27100 Pavia Italy Univ Las Palmas de Gran Canaria ULPGC Res Inst Appl Microelect IUMA Las Palmas Gran Canaria 35001 Spain Norwegian Inst Food Fisheries & Aquaculture Res N N-6122 Tromso Norway
In recent years, researchers designed several artificial intelligence solutions for healthcare applications, which usually evolved into functional solutions for clinical practice. Furthermore, deep learning (DL) metho... 详细信息
来源: 评论
DCGAN-DTA: Predicting drug-target binding affinity with deep convolutional generative adversarial networks
收藏 引用
BMC GENOMICS 2024年 第1期25卷 411页
作者: Kalemati, Mahmood Zamani Emani, Mojtaba Koohi, Somayyeh Sharif Univ Technol Dept Comp Engn Tehran Iran
Background In recent years, there has been a growing interest in utilizing computational approaches to predict drug-target binding affinity, aiming to expedite the early drug discovery process. To address the limitati... 详细信息
来源: 评论
Automatic reconstruction method of 3D geological models based on deep convolutional generative adversarial networks
收藏 引用
COMPUTATIONAL GEOSCIENCES 2022年 第5期26卷 1135-1150页
作者: Yang, Zixiao Chen, Qiyu Cui, Zhesi Liu, Gang Dong, Shaoqun Tian, Yiping China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China China Univ Geosci Hubei Key Lab Intelligent Geoinformat Proc Wuhan 430074 Peoples R China China Univ Geosci State Key Lab Biogeol & Environm Geol Wuhan 430074 Peoples R China China Univ Petr Coll Sci Beijing 102249 Peoples R China
How to reconstruct a credible three-dimensional (3D) geological model from very limited survey data, e.g. boreholes, outcrop, and two-dimensional (2D) images, is challenging in the field of 3D geological modeling. Aga... 详细信息
来源: 评论
A Novel Chaotic Block Image Encryption Algorithm Based on deep convolutional generative adversarial networks
收藏 引用
IEEE ACCESS 2021年 9卷 18497-18517页
作者: Fang, Pengfei Liu, Han Wu, Chengmao Xian Univ Technol Sch Automat & Informat Engn Xian 710048 Peoples R China Xian Univ Posts & Telecommun Sch Elect Engn Xian 710061 Peoples R China
This paper proposes a novel chaotic block image encryption algorithm based on deep convolutional generative adversarial networks (DCGANs), quaternions, an improved Feistel network, and an overall scrambling and diffus... 详细信息
来源: 评论
GAGAN: Enhancing Image Generation Through Hybrid Optimization of Genetic Algorithms and deep convolutional generative adversarial networks
收藏 引用
ALGORITHMS 2024年 第12期17卷 584-584页
作者: Konstantopoulou, Despoina Zacharia, Paraskevi Papoutsidakis, Michail Leligou, Helen C. Patrikakis, Charalampos Univ West Attica Dept Ind Design & Prod Engn Athens 12241 Greece Univ West Attica Dept Elect & Elect Engn Athens 12241 Greece
generative adversarial networks (GANs) are highly effective for generating realistic images, yet their training can be unstable due to challenges such as mode collapse and oscillatory convergence. In this paper, we pr... 详细信息
来源: 评论
A Novel Self-Updating Design Method for Complex 3D Structures Using Combined convolutional Neuron and deep convolutional generative adversarial networks
ADVANCED INTELLIGENT SYSTEMS
收藏 引用
ADVANCED INTELLIGENT SYSTEMS 2022年 第6期4卷
作者: Gu, Zewen Hou, Xiaonan Saafi, Mohamed Ye, Jianqiao Univ Lancaster Dept Engn Engn Bldg Lancaster LA1 4YW England
Mechanical design is one of the essential disciplines in engineering applications, while inspirations of design ideas highly depend on the ability and prior knowledge of engineers or designers. With the rapid developm... 详细信息
来源: 评论
A threshold self-setting condition monitoring scheme for wind turbine generator bearings based on deep convolutional generative adversarial networks
收藏 引用
MEASUREMENT 2021年 167卷 108234-108234页
作者: Chen, Peng Li, Yu Wang, Kesheng Zuo, Ming J. Heyns, P. Stephan Baggerohr, Stephan Univ Elect Sci & Technol China Sch Mech & Elect Engn Equipment Reliabil Prognost & Hlth Management Lab Chengdu 611731 Peoples R China Univ Alberta Dept Mech Engn Edmonton AB T6G 1H9 Canada Univ Pretoria Ctr Asset Integr Management Dept Mech & Aeronaut Engn Pretoria South Africa
Long-term reliable health condition monitoring (HCM) of a wind turbine is an essential method to avoid catastrophic failure results. Existing unsupervised learning methods, such as auto-encoder (AE) and denoising auto... 详细信息
来源: 评论
Evolving Levels for General Games Using deep convolutional generative adversarial networks  11
Evolving Levels for General Games Using Deep Convolutional G...
收藏 引用
11th Computer Science and Electronic Engineering Conference (CEEC)
作者: Irfan, Ayesha Zafar, Adeel Hassan, Shahbaz Riphah Int Univ Islamabad Pakistan
deep convolutional generative adversarial networks (DCGANs) are a machine learning approach that can learn to mimic any distribution of data. DCGANs consist of a generator and discriminator where generator generates n... 详细信息
来源: 评论
Distant Pedestrian Detection in the Wild using Single Shot Detector with deep convolutional generative adversarial networks
Distant Pedestrian Detection in the Wild using Single Shot D...
收藏 引用
International Joint Conference on Neural networks (IJCNN)
作者: Dinakaran, Ranjith Easom, Philip Zhang, Li Bouridane, Ahmed Jiang, Richard Edirisinghe, Eran Northumbria Univ Comp & Informat Sci Newcastle Upon Tyne Tyne & Wear England Univ Lancaster Comp & Commun Lancaster England Loughborough Univ Comp Sci Loughborough Leics England
In this work, we examine the feasibility of applying deep convolutional generative adversarial networks (DCGANs) with Single Shot Detector (SSD) as data-processing technique to handle with the challenge of pedestrian ... 详细信息
来源: 评论
SEMI-SUPERVISED LEARNING-BASED LIVE FISH IDENTIFICATION IN AQUACULTURE USING MODIFIED deep convolutional generative adversarial networks
收藏 引用
TRANSACTIONS OF THE ASABE 2018年 第2期61卷 699-710页
作者: Zhao, J. Li, Y. H. Zhang, F. D. Zhu, S. M. Liu, Y. Lu, H. D. Ye, Z. Y. Zhejiang Univ Coll Biosyst Engn & Food Sci Hangzhou Zhejiang Peoples R China Max Planck Inst Ornithol Dept Collect Behav Constance Germany Dalian Ocean Univ Sch Marine Sci & Technol & Environm Dalian Peoples R China Zhejiang Univ Ningbo Inst Technol Ningbo Zhejiang Peoples R China
Aiming at live fish identification in aquaculture, a practical and efficient semi-supervised learning model, based on modified deep convolutional generative adversarial networks (DCGANs), was proposed in this study. B... 详细信息
来源: 评论