咨询与建议

限定检索结果

文献类型

  • 23 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 41 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 37 篇 工学
    • 23 篇 计算机科学与技术...
    • 13 篇 电气工程
    • 8 篇 控制科学与工程
    • 7 篇 信息与通信工程
    • 5 篇 仪器科学与技术
    • 4 篇 软件工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 生物工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 网络空间安全
  • 9 篇 理学
    • 5 篇 生物学
    • 3 篇 物理学
    • 3 篇 化学
    • 1 篇 地球物理学
  • 8 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 2 篇 农学
    • 1 篇 作物学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 41 篇 deep convolution...
  • 8 篇 deep learning
  • 4 篇 machine learning
  • 3 篇 generative adver...
  • 3 篇 image generation
  • 3 篇 convolutional ne...
  • 2 篇 street view hous...
  • 2 篇 synthetic image ...
  • 2 篇 unsupervised rep...
  • 2 篇 plant disease
  • 2 篇 bio-inspired des...
  • 2 篇 bamboo epidermis
  • 2 篇 image processing
  • 2 篇 fracture toughne...
  • 2 篇 particle-reinfor...
  • 1 篇 alzheimer's dise...
  • 1 篇 gaussian process...
  • 1 篇 mammography
  • 1 篇 discriminator we...
  • 1 篇 intraday electri...

机构

  • 1 篇 mcmaster univ sc...
  • 1 篇 jiangsu saideli ...
  • 1 篇 riphah int univ ...
  • 1 篇 ltd.
  • 1 篇 tsinghua univ sc...
  • 1 篇 univ las palmas ...
  • 1 篇 univ pretoria ct...
  • 1 篇 wuhan polytech u...
  • 1 篇 jntuh vignana bh...
  • 1 篇 sci & technol co...
  • 1 篇 univ lancaster d...
  • 1 篇 panimalar engn c...
  • 1 篇 mcgill univ dept...
  • 1 篇 syracuse univ de...
  • 1 篇 syracuse univ la...
  • 1 篇 the bioinspired ...
  • 1 篇 china univ petr ...
  • 1 篇 vit tall orlando...
  • 1 篇 jfe steel steel ...
  • 1 篇 univ chinese aca...

作者

  • 1 篇 huang qi-xian
  • 1 篇 wang guochao
  • 1 篇 bouridane ahmed
  • 1 篇 wu chengmao
  • 1 篇 zacharia paraske...
  • 1 篇 zhang honglei
  • 1 篇 yuan zi-qing
  • 1 篇 bedair khaled
  • 1 篇 shim hyunjung
  • 1 篇 kim gihun
  • 1 篇 cheng long
  • 1 篇 li y. h.
  • 1 篇 shen day-fann
  • 1 篇 wu min
  • 1 篇 ye jianqiao
  • 1 篇 yoo seunghwan
  • 1 篇 dissanayake mahe...
  • 1 篇 sun jiahui
  • 1 篇 phung b. t.
  • 1 篇 cheng xinyu

语言

  • 41 篇 英文
检索条件"主题词=Deep Convolutional Generative Adversarial Networks"
41 条 记 录,以下是21-30 订阅
排序:
Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space
收藏 引用
VISUAL COMPUTER 2021年 第7期37卷 1707-1729页
作者: Wu, Min Jin, Xin Jiang, Qian Lee, Shin-jye Liang, Wentao Lin, Guo Yao, Shaowen Yunnan Univ Sch Software Kunming Yunnan Peoples R China Natl Chiao Tung Univ Inst Technol Management Hsinchu Peoples R China
Image colorization technique is used to colorize the gray-level image or single-channel image, which is a very significant and challenging task in image processing, especially the colorization of remote sensing images... 详细信息
来源: 评论
Robust unsupervised anomaly detection via multi-time scale DCGANs with forgetting mechanism for industrial multivariate time series
收藏 引用
NEUROCOMPUTING 2021年 423卷 444-462页
作者: Liang, Haoran Song, Lei Wang, Jianxing Guo, Lili Li, Xuzhi Liang, Ji Chinese Acad Sci Technol & Engn Ctr Space Utilizat Key Lab Space Utilizat Beijing 100094 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China Tsinghua Univ Sch Software Beijing 100084 Peoples R China
Detecting anomalies in time series is a vital technique in a wide variety of industrial application in which sensors monitor expensive machinery. The complexity of this task increases when heterogeneous sensors provid... 详细信息
来源: 评论
deep Learning Methods for Screening Pulmonary Tuberculosis Using Chest X-rays
收藏 引用
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2021年 第1期9卷 39-49页
作者: Dasanayaka, Chirath Dissanayake, Maheshi Buddhinee Univ Peradeniya Fac Engn Dept Elect & Elect Engn Kandy Sri Lanka
Tuberculosis (TB) is a contagious bacterial airborne disease, and is one of the top 10 causes of death worldwide. According to the World Health Organisation, around 1.8 billion people are infected with TB and 1.6 mill... 详细信息
来源: 评论
Unveiling Spoofing Attempts: A DCGAN-based Approach to Enhance Face Spoof Detection in Biometric Authentication
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2024年 第4期15卷 959-969页
作者: Rao, Vuda Sreenivasa Kasireddy, Shirisha Mishra, Annapurna Salini, R. Godla, Sanjiv Rao Bedair, Khaled Koneru Lakshmaiah Educ Fdn Dept Comp Sci & Engn Vaddeswaram Andhra Pradesh India JNTUH Vignana Bharathi Inst Technol Hyderabad India Silicon Inst Technol Elect & Commun Engn Bhubaneswar India Panimalar Engn Coll Dept CSE Chennai Tamil Nadu India Aditya Coll Engn & Technol Suraplem Dept AIML& Data Sci Suraplem Andhra Pradesh India Qatar Univ Coll Arts & Sci Dept Social Sci POB 2713 Doha Qatar
Face spoofing attacks have become more dangerous as biometric identification has become more widely used. Through the utilisation of false facial photographs, attackers seek to fool systems in these assaults, endanger... 详细信息
来源: 评论
AI-based Robust Convex Relaxations for Supporting Diverse QoS in Next-Generation Wireless Systems  41
AI-based Robust Convex Relaxations for Supporting Diverse Qo...
收藏 引用
41st IEEE International Conference on Distributed Computing Systems (ICDCS)
作者: Chan, Steve Krunz, Marwan Griffin, Bob Vit Tall Orlando FL 32835 USA Univ Arizona Tucson AZ 85721 USA
Supporting diverse Quality of Service (QoS) requirements in 5G and beyond wireless systems often involves solving a succession of convex optimization problems, with varied approaches to optimally resolve each problem.... 详细信息
来源: 评论
A Co-Attention Method Based on generative adversarial networks for Multi-view Images  22
A Co-Attention Method Based on Generative Adversarial Networ...
收藏 引用
22nd IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Fall)
作者: Huang, Qi-Xian Shi, Shu-Pei Lin, Guo-Shiang Shen, Day-Fann Sun, Hung-Min Natl Tsing Hua Univ Inst Informat Syst & Applicat Hsinchu Taiwan Natl Yunlin Univ Technol Dept Elect Engn Touliu Yunlin Taiwan Natl Chin Yi Univ Technol Dept Comp Sci & Informat Engn Taichung Taiwan Natl Tsing Hua Univ Dept Comp Sci Hsinchu Taiwan
In this paper, we use deep convolutional generative adversarial networks (DCGANs) method to generate more images with multiple views to increase our dataset diversity. We use 3D-model different views for training DCGA... 详细信息
来源: 评论
Research on Radar Target Recognition Method Based on deep Learning
Research on Radar Target Recognition Method Based on Deep Le...
收藏 引用
International Conference on Artificial Intelligence, Virtual Reality, and Visualization (AIVRV)
作者: Shi, Duanyang Lin, Qiang Hu, Bing Wang, Guochao Air Force Early Warning Acad Wuhan Peoples R China 95174 PLA Troops Wuhan Wuhan Peoples R China
At present, after radar target detection, radar target recognition mainly depends on manual judgment. Manual identification relies too much on the operator's personal experience and subjective consciousness, which... 详细信息
来源: 评论
A Novel Image-Based Diagnosis Method Using Improved DCGAN for Rotating Machinery
收藏 引用
SENSORS 2022年 第19期22卷 7534-7534页
作者: Gao, Yangde Piltan, Farzin Kim, Jong-Myon Univ Ulsan Dept Elect Elect & Comp Engn Ulsan 44610 South Korea PD Technol Cooperat Ulsan 44610 South Korea
Rotating machinery plays an important role in industrial systems, and faults in the machinery may damage the system health. A novel image-based diagnosis method using improved deep convolutional generative adversarial... 详细信息
来源: 评论
generative adversarial networks-Based Synthetic Microstructures for Data-Driven Materials Design
收藏 引用
ADVANCED THEORY AND SIMULATIONS 2022年 第5期5卷
作者: Narikawa, Ryuichi Fukatsu, Yoshihito Wang, Zhi-Lei Ogawa, Toshio Adachi, Yoshitaka Tanaka, Yuji Ishikawa, Shin Nagoya Univ Dept Mat Sci & Engn Chikusa Ku Furo Cho Nagoya Aichi 4648601 Japan JFE Steel Steel Res Lab Cyuo Ku 1 Kawasaki Cho Chiba 2600835 Japan
To understand the material paradigm, data-driven material design necessitates both microstructural input and output in the form of visual images. Therefore, generative adversarial networks (GAN)-based deep convolution... 详细信息
来源: 评论
OpenNIG - Open Neural Image Generator  13
OpenNIG - Open Neural Image Generator
收藏 引用
13th International Conference on Communications (COMM)
作者: Avram, Andrei-Marius Morogan, Luciana Toma, Stefan-Adrian Univ Politehn Bucuresti UPB Bucharest Romania Mil Tech Acad Ferdinand I MTA Bucharest Romania
generative models are statistical models that learn a true underlying data distribution from samples using unsupervised learning, aiming to generate new data points with some variation. In this paper, we introduce Ope... 详细信息
来源: 评论