咨询与建议

限定检索结果

文献类型

  • 23 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 41 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 37 篇 工学
    • 23 篇 计算机科学与技术...
    • 13 篇 电气工程
    • 8 篇 控制科学与工程
    • 7 篇 信息与通信工程
    • 5 篇 仪器科学与技术
    • 4 篇 软件工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 生物工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 网络空间安全
  • 9 篇 理学
    • 5 篇 生物学
    • 3 篇 物理学
    • 3 篇 化学
    • 1 篇 地球物理学
  • 8 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 2 篇 农学
    • 1 篇 作物学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 41 篇 deep convolution...
  • 8 篇 deep learning
  • 4 篇 machine learning
  • 3 篇 generative adver...
  • 3 篇 image generation
  • 3 篇 convolutional ne...
  • 2 篇 street view hous...
  • 2 篇 synthetic image ...
  • 2 篇 unsupervised rep...
  • 2 篇 plant disease
  • 2 篇 bio-inspired des...
  • 2 篇 bamboo epidermis
  • 2 篇 image processing
  • 2 篇 fracture toughne...
  • 2 篇 particle-reinfor...
  • 1 篇 alzheimer's dise...
  • 1 篇 gaussian process...
  • 1 篇 mammography
  • 1 篇 discriminator we...
  • 1 篇 intraday electri...

机构

  • 1 篇 mcmaster univ sc...
  • 1 篇 jiangsu saideli ...
  • 1 篇 riphah int univ ...
  • 1 篇 ltd.
  • 1 篇 tsinghua univ sc...
  • 1 篇 univ las palmas ...
  • 1 篇 univ pretoria ct...
  • 1 篇 wuhan polytech u...
  • 1 篇 jntuh vignana bh...
  • 1 篇 sci & technol co...
  • 1 篇 univ lancaster d...
  • 1 篇 panimalar engn c...
  • 1 篇 mcgill univ dept...
  • 1 篇 syracuse univ de...
  • 1 篇 syracuse univ la...
  • 1 篇 the bioinspired ...
  • 1 篇 china univ petr ...
  • 1 篇 vit tall orlando...
  • 1 篇 jfe steel steel ...
  • 1 篇 univ chinese aca...

作者

  • 1 篇 huang qi-xian
  • 1 篇 wang guochao
  • 1 篇 bouridane ahmed
  • 1 篇 wu chengmao
  • 1 篇 zacharia paraske...
  • 1 篇 zhang honglei
  • 1 篇 yuan zi-qing
  • 1 篇 bedair khaled
  • 1 篇 shim hyunjung
  • 1 篇 kim gihun
  • 1 篇 cheng long
  • 1 篇 li y. h.
  • 1 篇 shen day-fann
  • 1 篇 wu min
  • 1 篇 ye jianqiao
  • 1 篇 yoo seunghwan
  • 1 篇 dissanayake mahe...
  • 1 篇 sun jiahui
  • 1 篇 phung b. t.
  • 1 篇 cheng xinyu

语言

  • 41 篇 英文
检索条件"主题词=Deep Convolutional Generative Adversarial Networks"
41 条 记 录,以下是31-40 订阅
排序:
Generation of Compound Emotions Expressions with Emotion generative adversarial networks (EmoGANs)  59
Generation of Compound Emotions Expressions with Emotion Gen...
收藏 引用
59th Annual Conference of the Society-of-Instrument-and-Control-Engineers-of-Japan (SICE)
作者: Khine, Win Shwe Sin Siritanawan, Prarinya Kotani, Kazunori Japan Adv Inst Sci & Technol Sch Informat Sci Nomi Ishikawa Japan
Facial expressions of human emotions play an essential role in gaining insights into human cognition. They are crucial for designing human-computer interaction models. Although human emotional states are not limited t... 详细信息
来源: 评论
DCGANs for Realistic Breast Mass Augmentation in X-ray Mammography
DCGANs for Realistic Breast Mass Augmentation in X-ray Mammo...
收藏 引用
Conference on Medical Imaging - Computer-Aided Diagnosis
作者: Alyafi, Basel Diaz, Oliver Marti, Robert Univ Girona Comp Vis & Robot Inst Girona Spain Univ Barcelona Dept Math & Comp Sci Barcelona Spain
Early detection has a major contribution to the curability of breast cancer, and using mammographic images, this can be achieved non-invasively. Supervised deep learning, the dominant computer-aided detection (CADe) t... 详细信息
来源: 评论
The Structure-Mechanics Relationship of Bamboo-Epidermis and Inspired Composite Design by Artificial Intelligence (Adv. Mater. 22/2025)
收藏 引用
Advanced Materials 2025年 第22期37卷
作者: Zhao Qin Aymeric Pierre Destree Laboratory for Multiscale Material Modelling Syracuse University 151L Link Hall Syracuse NY 13244 USA Department of Civil and Environmental Engineering Syracuse University 151L Link Hall Syracuse NY 13244 USA The BioInspired Institute Syracuse University Syracuse NY 13244 USA
来源: 评论
A Simple Recurrent Unit Model Based Intrusion Detection System With DCGAN
收藏 引用
IEEE ACCESS 2019年 7卷 83286-83296页
作者: Yang, Jin Li, Tao Liang, Gang He, Wenbo Zhao, Yue Sichuan Univ Coll Cyber Secur Dept Comp & Software Chengdu 610017 Sichuan Peoples R China McMaster Univ Sci & Technol Commun Secur Lab Hamilton ON L8S 4L8 Canada Sci & Technol Commun Secur Lab Chengdu 610041 Sichuan Peoples R China
Due to the complex and time-varying network environments, traditional methods are difficult to extract accurate features of intrusion behavior from the high-dimensional data samples and process the high-volume of thes... 详细信息
来源: 评论
DA-DCGAN: An Effective Methodology for DC Series Arc Fault Diagnosis in Photovoltaic Systems
收藏 引用
IEEE ACCESS 2019年 7卷 45831-45840页
作者: Lu, Shibo Sirojan, Tharmakulasingam Phung, B. T. Zhang, Daming Ambikairajah, Eliathamby Univ New South Wales Sch Elect Engn & Telecommun Sydney NSW 2052 Australia
DC arc faults, especially series arcing, can occur in photovoltaic (PV) systems and pose a challenging detection and protection problem. Machine learning-based methods are increasingly being used for fault diagnosis a... 详细信息
来源: 评论
Cardiac diffusion tensor imaging simulation based on deep convolutional generative adversarial network  14
Cardiac diffusion tensor imaging simulation based on deep co...
收藏 引用
14th IEEE International Conference on Signal Processing (ICSP)
作者: Liu, Bin Wang, Lihui Zhang, Jian Cheng, Xinyu Yang, Feng Huang, Jianping Zhu, Yuemin Guizhou Univ Sch Comp Sci & Technol Key Lab Intelligent Med Image Anal & Precise Diag Guiyang Guizhou Peoples R China Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing Peoples R China Northeast Forestry Univ Coll Mech & Elect Engn Harbin Heilongjiang Peoples R China Univ Lyon CNRS INSERM INSA LyonCREATISUMR 5220U1206 F-69621 Villeurbanne France
Myocardial fiber structure is related to heart function, the research of which is therefore of great fundamental and clinical importance. Diffusion magnetic resonance imaging (dMRI) is the most promising method for no... 详细信息
来源: 评论
SINOGRAM IMAGE COMPLETION FOR LIMITED ANGLE TOMOGRAPHY WITH generative adversarial networks  26
SINOGRAM IMAGE COMPLETION FOR LIMITED ANGLE TOMOGRAPHY WITH ...
收藏 引用
26th IEEE International Conference on Image Processing (ICIP)
作者: Yoo, Seunghwan Yang, Xiaogang Wolfman, Mark Gursoy, Doga Katsaggelos, Aggelos K. Northwestern Univ Dept Elect Engn & Comp Sci Evanston IL 60208 USA Argonne Natl Lab Adv Photon Source Argonne IL 60439 USA
In this paper, we present a novel approach based on deep neural network for solving the limited angle tomography problem. The limited angle views in tomography cause severe artifacts in the tomographic reconstruction.... 详细信息
来源: 评论
Digital Recognition of Street View House Numbers Based on DCGAN  19
Digital Recognition of Street View House Numbers Based on DC...
收藏 引用
2nd International Conference on Image and Graphics Processing (ICIGP) / 5th International Conference on Virtual Reality
作者: Zhong, Juping Gao, Jing Chen, Rongjun Li, Jun Guangdong Polytech Normal Univ Coll Comp Sci Guangzhou 510665 Guangdong Peoples R China Guangdong Hengdian Informat Technol Co Ltd Guangzhou 510635 Guangdong Peoples R China
deep learning algorithms have surpassed human resolution in applications such as face recognition and object classification. However, it can only produce very blurred, lack of details of the image. generative Adversar... 详细信息
来源: 评论
Unsupervised Facial Image De-occlusion with Optimized deep generative Models  8
Unsupervised Facial Image De-occlusion with Optimized Deep G...
收藏 引用
8th International Conference on Image Processing Theory, Tools and Applications (IPTA)
作者: Xu, Lei Zhang, Honglei Raitoharju, Jenni Gabbouj, Moncef Tampere Univ Technol Signal Proc Lab Tampere Finland
In recent years, generative adversarial networks (GANs) or various types of Auto-Encoders (AEs) have gained attention on facial image de-occlusion and/or in-painting tasks. In this paper, we propose a novel unsupervis... 详细信息
来源: 评论
Digital Recognition of Street View House Numbers Based on DCGAN
Digital Recognition of Street View House Numbers Based on DC...
收藏 引用
2019第二届图像与图形处理国际会议
作者: Juping Zhong Jing Gao Rongjun Chen Jun Li College of Computer Science Guangdong Polytechnic Normal University Guangdong Hengdian Information Technology Co. Ltd.
deep learning algorithms have surpassed human resolution in applications such as face recognition and object classification. However, it can only produce very blurred, lack of details of the image. generative Adversar... 详细信息
来源: 评论