咨询与建议

限定检索结果

文献类型

  • 38 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 54 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 53 篇 工学
    • 37 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 11 篇 信息与通信工程
    • 8 篇 软件工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 控制科学与工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 航空宇航科学与技...
    • 2 篇 网络空间安全
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 核科学与技术
    • 1 篇 安全科学与工程
  • 10 篇 管理学
    • 10 篇 管理科学与工程(可...
  • 7 篇 医学
    • 5 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 5 篇 理学
    • 4 篇 物理学
    • 1 篇 化学
    • 1 篇 生物学
  • 1 篇 艺术学
    • 1 篇 美术学

主题

  • 54 篇 deep learning ar...
  • 6 篇 deep learning
  • 5 篇 feature extracti...
  • 4 篇 transfer learnin...
  • 4 篇 learning (artifi...
  • 3 篇 image classifica...
  • 2 篇 recurrent neural...
  • 2 篇 neurophysiology
  • 2 篇 image segmentati...
  • 2 篇 neural networks
  • 2 篇 cameras
  • 2 篇 neural net archi...
  • 2 篇 monitoring
  • 2 篇 real-time system...
  • 2 篇 cnn
  • 2 篇 security
  • 2 篇 deep belief netw...
  • 2 篇 classification
  • 2 篇 estimation
  • 2 篇 convolutional ne...

机构

  • 1 篇 eulji univ dept ...
  • 1 篇 natl univ singap...
  • 1 篇 taif univ coll c...
  • 1 篇 cochin univ sci ...
  • 1 篇 minist educ key ...
  • 1 篇 east china norma...
  • 1 篇 chinese acad sci...
  • 1 篇 waph technol cor...
  • 1 篇 bennet univ grea...
  • 1 篇 southeast univ s...
  • 1 篇 univ caldas dept...
  • 1 篇 guru gobind sing...
  • 1 篇 univ caldas ingn...
  • 1 篇 china univ min &...
  • 1 篇 shanghai jiao to...
  • 1 篇 carleton univ sc...
  • 1 篇 southeast univ j...
  • 1 篇 univ roma tor ve...
  • 1 篇 jeonbuk inst dep...
  • 1 篇 cent queensland ...

作者

  • 1 篇 tsai hsiao-ping
  • 1 篇 fan chih-peng
  • 1 篇 duque nestor
  • 1 篇 kwon kon-woo
  • 1 篇 ishtiak taoseef
  • 1 篇 chen huawei
  • 1 篇 lin wei-liang
  • 1 篇 arango-lopez jef...
  • 1 篇 liu wenqiang
  • 1 篇 zhang jiuling
  • 1 篇 van nam hoang
  • 1 篇 ahmed shams forr...
  • 1 篇 asritha k. laksh...
  • 1 篇 lee sangwon
  • 1 篇 kazuhiro kondo
  • 1 篇 hassan maruf
  • 1 篇 shah atharva
  • 1 篇 masmoudi salma
  • 1 篇 cittern david
  • 1 篇 hassanien aboul ...

语言

  • 50 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"主题词=Deep Learning Architecture"
54 条 记 录,以下是1-10 订阅
排序:
Cloud-based deep learning architecture for DDoS cyber attack prediction
收藏 引用
EXPERT SYSTEMS 2025年 第1期42卷
作者: Arango-Lopez, Jeferson Isaza, Gustavo Ramirez, Fabian Duque, Nestor Montes, Jose Univ Caldas Dept Sistemas & Informat Manizales Caldas Colombia Univ Caldas Ingn Computac Manizales Caldas Colombia Univ Nacl Colombia Sede Manizales Dept Informat & Comp Manizales Caldas Colombia
Conventional methodologies employed in detecting distributed denial-of-service attacks have frequently struggled to adapt to the dynamic and multi-faceted evolution of such threats. Furthermore, many of the contempora... 详细信息
来源: 评论
Unified deep learning architecture for the Detection of All Catenary Support Components
收藏 引用
IEEE ACCESS 2020年 8卷 17049-17059页
作者: Liu, Wenqiang Liu, Zhigang Nunez, Alfredo Han, Zhiwei Southwest Jiaotong Univ Sch Elect Engn Chengdu 610031 Peoples R China Delft Univ Technol Sect Railway Engn NL-2628 Delft Netherlands
With the rapid development of deep learning technologies, researchers have begun to utilize convolutional neural network (CNN)-based object detection methods to detect multiple catenary support components (CSCs). The ... 详细信息
来源: 评论
Acoustic Source Localization in the Circular Harmonic Domain Using deep learning architecture
收藏 引用
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 2022年 30卷 2475-2491页
作者: SongGong, Kunkun Wang, Wenwu Chen, Huawei Nanjing Univ Aeronaut & Astronaut Coll Elect & Informat Engn Nanjing 210016 Peoples R China Minist Educ Key Lab Syst Control & Informat Proc Shanghai 200240 Peoples R China Univ Surrey Ctr Vis Speech & Signal Proc Guildford GU2 7XH Surrey England
The problem of direction of arrival (DOA) estimation with a circular microphone array has been addressed with classical source localization methods, such as the model-based methods and the param etric methods. These m... 详细信息
来源: 评论
Understanding the Influence of Graph Kernels on deep learning architecture: A Case Study of Flow-based Network Attack Detection  18
Understanding the Influence of Graph Kernels on Deep Learnin...
收藏 引用
18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom) / 13th IEEE International Conference on Big Data Science and Engineering (IEEE BigDataSE)
作者: Su, Liya Yao, Yepeng Lu, Zhigang Liu, Baoxu Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China Chinese Acad Sci Inst Informat Engn Beijing Peoples R China
Flow-based network attack detection technology is able to identify many threats in network traffic. Existing techniques have several drawbacks: i) rule-based approaches are vulnerable because it needs all the signatur... 详细信息
来源: 评论
Real-time vehicular accident prevention system using deep learning architecture
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2022年 206卷
作者: Kabir, Md Faysal Roy, Sahadev NIT Arunachal Pradesh Dept Elect & Commun Engn Jote India
Approximately 20 million people die every year of road accidents, mainly caused due to ignorance of road safety norms and traffic rules. Drivers' experience and prudence still have to be relied upon to prevent veh... 详细信息
来源: 评论
Semi-supervised elastic manifold embedding with deep learning architecture
收藏 引用
PATTERN RECOGNITION 2020年 107卷 107425-107425页
作者: Zhu, R. Dornaika, F. Ruichek, Y. Univ Bourgogne Franche Comte Lab CIAD UTBM F-90010 Belfort France Univ Basque Country UPV EHU San Sebastian Spain Ikerbasque Basque Fdn Sci Bilbao Spain
Graph-based embedding aims to reduce the dimension of high dimensional data and to extract relevant features for learning tasks. In this letter, we propose an Elastic graph-based embedding with deep architecture which... 详细信息
来源: 评论
Radar Emitter Recognition Based on deep learning architecture
Radar Emitter Recognition Based on Deep Learning Architectur...
收藏 引用
CIE International Conference on Radar (RADAR)
作者: Li, Hongbo Jing, Wei Bai, Yang Harbin Inst Technol Sch Elect & Informat Engn Harbin Peoples R China
With the increasing complexity of electromagnetic environment and the rising of operating patterns of new radars, emitter recognition is becoming more and more difficult. This paper presents a deep learning architectu... 详细信息
来源: 评论
deepPF: A deep learning based architecture for metro passenger flow prediction
收藏 引用
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES 2019年 第Apr.期101卷 18-34页
作者: Liu, Yang Liu, Zhiyuan Jia, Ruo Southeast Univ Jiangsu Key Lab Urban ITS Jiangsu Prov Collaborat Innovat Ctr Modern Urban Sch Transportat Nanjing Jiangsu Peoples R China
This study aims to combine the modeling skills of deep learning and the domain knowledge in transportation into prediction of metro passenger flow. We present an end-to-end deep learning architecture, termed as deep P... 详细信息
来源: 评论
Manifesto of deep learning architecture for Aspect Level Sentiment Analysis to extract customer criticism
收藏 引用
EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS 2024年 第6期11卷 1-15页
作者: Kushwaha, N. Singh, B. Agrawal, S. IIIT Ranchi CSE Dept Ranchi India Bennet Univ Greater Noida India
Sentiment analysis, a critical task in natural language processing, aims to automatically identify and classify the sentiment expressed in textual data. Aspect-level sentiment analysis focuses on determining sentiment... 详细信息
来源: 评论
MaTPIP: A deep-learning architecture with eXplainable AI for sequence-driven, feature mixed protein-protein interaction prediction
收藏 引用
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024年 244卷 107955-107955页
作者: Ghosh, Shubhrangshu Mitra, Pralay Indian Inst Technol Kharagpur Dept Comp Sci & Engn Kharagpur W Bengal India Tata Consultancy Serv Ltd TCS Res Kolkata West Bengal India
Background and Objective: Protein-protein interaction (PPI) is a vital process in all living cells, controlling essential cell functions such as cell cycle regulation, signal transduction, and metabolic processes with... 详细信息
来源: 评论