咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 24 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 24 篇 工学
    • 18 篇 计算机科学与技术...
    • 10 篇 电气工程
    • 4 篇 信息与通信工程
    • 4 篇 软件工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 控制科学与工程
    • 1 篇 石油与天然气工程
  • 2 篇 医学
    • 2 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 24 篇 deep learning op...
  • 3 篇 deep learning
  • 3 篇 generalization b...
  • 2 篇 computational ef...
  • 2 篇 computational mo...
  • 2 篇 particle swarm o...
  • 2 篇 multistage qhm
  • 2 篇 sgd momentum
  • 2 篇 accuracy
  • 2 篇 training
  • 2 篇 hyperparameter t...
  • 1 篇 fuzzy logic
  • 1 篇 tahiti lime
  • 1 篇 memory footprint
  • 1 篇 tuning
  • 1 篇 parallel process...
  • 1 篇 object detection
  • 1 篇 scalability
  • 1 篇 neurons
  • 1 篇 information shar...

机构

  • 1 篇 univ virginia ch...
  • 1 篇 univ michigan an...
  • 1 篇 school of automa...
  • 1 篇 natl univ def te...
  • 1 篇 univ ind santand...
  • 1 篇 univ silesia ins...
  • 1 篇 sea ai lab
  • 1 篇 univ chinese aca...
  • 1 篇 amazon web serv ...
  • 1 篇 chinese acad sci...
  • 1 篇 beijing univ pos...
  • 1 篇 natl univ def & ...
  • 1 篇 pohang univ sci ...
  • 1 篇 hamad bin khalif...
  • 1 篇 univ birmingham ...
  • 1 篇 saudi elect univ...
  • 1 篇 aristotle univ t...
  • 1 篇 hanyang univ dep...
  • 1 篇 bosonai santa cl...
  • 1 篇 univ virginia ch...

作者

  • 3 篇 sun jianhui
  • 3 篇 zhang aidong
  • 2 篇 yang ying
  • 2 篇 xun guangxu
  • 1 篇 tsaregorodtsev a...
  • 1 篇 kim sungkyun
  • 1 篇 kim aeri
  • 1 篇 qolomany basheer
  • 1 篇 belhaouari samir...
  • 1 篇 zhang kaige
  • 1 篇 lee seungju
  • 1 篇 zhang xingzhou
  • 1 篇 alhelaly soha
  • 1 篇 qi heng
  • 1 篇 xie xingyu
  • 1 篇 yang hailong
  • 1 篇 chen kangkang
  • 1 篇 chelloug samia a...
  • 1 篇 abdulrrozaq muha...
  • 1 篇 qadir junaid

语言

  • 24 篇 英文
检索条件"主题词=Deep Learning Optimization"
24 条 记 录,以下是1-10 订阅
排序:
Automated deep learning optimization via DSL-Based Source Code Transformation  2024
Automated Deep Learning Optimization via DSL-Based Source Co...
收藏 引用
33rd ACM SIGSOFT International Conference on Software Testing and Analysis (ISSTA)
作者: Wang, Ruixin Lu, Minghai Yu, Cody Hao Lai, Yi-Hsiang Zhang, Tianyi Purdue Univ W Lafayette IN 47907 USA BosonAI Santa Clara CA USA Amazon Web Serv Seattle WA USA
As deep learning models become increasingly bigger and more complex, it is critical to improve model training and inference efficiency. Though a variety of highly optimized libraries and packages (known as DL kernels)... 详细信息
来源: 评论
Adaptive Regularization via Residual Smoothing in deep learning optimization
收藏 引用
IEEE ACCESS 2019年 7卷 122889-122899页
作者: Cho, Junghee Kwon, Junseok Hong, Byung-Woo Seoul Natl Univ Dept Math Sci Seoul 08826 South Korea Chung Ang Univ Comp Sci Dept Seoul 06974 South Korea
We present an adaptive regularization algorithm that can be effectively applied to the optimization problem in deep learning framework. Our regularization algorithm aims to take into account the fitness of data to the... 详细信息
来源: 评论
deep learning with optimization Techniques for the Classification of Spoken English Digit  13th
Deep Learning with Optimization Techniques for the Classific...
收藏 引用
13th International Conference on Computational Collective Intelligence (ICCCI)
作者: Oruh, Jane Viriri, Serestina Univ KwaZulu Natal Sch Math Stat & Comp Sci Durban South Africa
Multiclass classification is a fundamental problem for many speech recognition systems. A typical example of multiclass classification in speech recognition is spoken digit classification. This type of classification ... 详细信息
来源: 评论
Large Language Model Enhanced Particle Swarm optimization for Hyperparameter Tuning for deep learning Models
IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY
收藏 引用
IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 2025年 第1期6卷 574-585页
作者: Hameed, Saad Qolomany, Basheer Belhaouari, Samir Brahim Abdallah, Mohamed Qadir, Junaid Al-Fuqaha, Ala Hamad Bin Khalifa Univ Coll Sci & Engn Div Informat & Comp Technol Doha 5825 Qatar Howard Univ Coll Med Dept Med Washington DC USA Qatar Univ Dept Comp Sci & Engn Doha Qatar
Determining the ideal architecture for deep learning models, such as the number of layers and neurons, is a difficult and resource-intensive process that frequently relies on human tuning or computationally costly opt... 详细信息
来源: 评论
Semantic-Based optimization of deep learning for Efficient Real-Time Medical Image Segmentation
收藏 引用
INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS 2024年 第1期20卷 1页
作者: Wei, Zhenkun Liu, Jia Yao, Yu Chinese Acad Sci Chengdu Inst Comp Applicat Chengdu Peoples R China Univ Chinese Acad Sci Beijing Peoples R China China Mobile Ind Res Inst Beijing Peoples R China
In response to the critical need for advanced solutions in medical imaging segmentation, particularly for real-time applications in diagnostics and treatment planning, this study introduces SM-UNet. This novel deep le... 详细信息
来源: 评论
Improving stochastic models by smart denoising and latent representation optimization
收藏 引用
INFORMATION SCIENCES 2025年 692卷
作者: Jelencic, Jakob Massri, M. Besher Todorovski, Ljupco Grobelnik, Marko Mladenic, Dunja Jozef Stefan Inst Dept Artificial Intelligence Jamova Cesta 39 Ljubljana 1000 Slovenia Jozef Stefan Int Postgrad Sch Jamova Cesta 39 Ljubljana 1000 Slovenia Univ Ljubljana Fac Math & Phys Jadranska Ulica 19 Ljubljana 1000 Slovenia Qlector Doo Trzaska C 68a Ljubljana 1000 Slovenia
This paper introduces an innovative deep learning-based optimization method specifically designed for data derived from stochastic processes. Addressing the prevalent issue of rapid overfitting in real-world scenarios... 详细信息
来源: 评论
LoCo: Low-Bit Communication Adaptor for Large-Scale Model Training
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2025年 第6期47卷 4285-4298页
作者: Xie, Xingyu Lin, Zhijie Toh, Kim-Chuan Zhou, Pan Natl Univ Singapore Dept Math Singapore 119077 Singapore Sea AI Lab Singapore 138522 Singapore Singapore Management Univ Sch Comp & Informat Syst Singapore 188065 Singapore
To efficiently train large-scale models, low-bit gradient communication compresses full-precision gradients on local GPU nodes into low-precision ones for higher gradient synchronization efficiency among GPU nodes. Ho... 详细信息
来源: 评论
Enhancing Hajj and Umrah Services Through Predictive Social Media Classification
收藏 引用
IEEE ACCESS 2025年 13卷 67220-67238页
作者: Chelloug, Samia Allaoua Muthanna, Mohammed Saleh Ali Jamil, Faisal Al-Gaashani, Mehdhar S. A. M. Alhelaly, Soha Aziz, Ahmed Muthanna, Ammar Princess Nourah bint Abdulrahman Univ Coll Comp & Informat Sci Dept Informat Technol POB 84428 Riyadh 11671 Saudi Arabia Tashkent State Univ Econ Dept Int Business Management Tashkent 100066 Uzbekistan Ulster Univ Sch Comp Engn & Intelligent Syst Londonderry BT48 7JL North Ireland Univ Elect Sci & Technol China Sch Resources & Environm Chengdu 610056 Sichuan Peoples R China Saudi Elect Univ Dept Comp Sci Riyadh 13323 Saudi Arabia Benha Univ Fac Comp & Artificial Intelligence Dept Comp Sci Banha 13511 Egypt Cent Asian Univ Engn Sch Tashkent 111221 Uzbekistan Peoples Friendship Univ Russia RUDN Univ Dept Appl Probabil & Informat Moscow 117198 Russia
Each year, millions of individuals embark on the sacred journeys of Hajj and Umrah to Saudi Arabia. Given the diverse needs of these pilgrims and the continuous efforts to enhance their experience, we propose an advan... 详细信息
来源: 评论
Reducing Memory Footprint in deep Network Training by Gradient Space Reutilization  7th
Reducing Memory Footprint in Deep Network Training by Gradie...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Dong, Yiming Lin, Zhouchen Peking Univ Sch Intelligence Sci & Technol State Key Lab Gen Artificial Intelligence Beijing Peoples R China Pazhou Lab Huangpu Guangzhou Guangdong Peoples R China
As deep learning continues to spearhead transformative breakthroughs across various domains, the computational and memory demands for training state-of-the-art models have surged exponentially. This escalation not onl... 详细信息
来源: 评论
A Survey on Edge Computing Systems and Tools
收藏 引用
PROCEEDINGS OF THE IEEE 2019年 第8期107卷 1537-1562页
作者: Liu, Fang Tang, Guoming Li, Youhuizi Cai, Zhiping Zhang, Xingzhou Zhou, Tongqing Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou 510006 Guangdong Peoples R China Natl Univ Def Technol Key Lab Sci & Technol Informat Syst Engn Changsha 410073 Hunan Peoples R China Hangzhou Dianzi Univ Sch Comp Sci & Technol Hangzhou 310002 Zhejiang Peoples R China Natl Univ Def Technol Coll Comp Changsha 410073 Hunan Peoples R China Chinese Acad Sci Inst Comp Technol State Key Lab Comp Architecture Beijing 100190 Peoples R China
Driven by the visions of Internet of Things and 5G communications, the edge computing systems integrate computing, storage, and network resources at the edge of the network to provide computing infrastructure, enablin... 详细信息
来源: 评论