咨询与建议

限定检索结果

文献类型

  • 13 篇 会议
  • 12 篇 期刊文献

馆藏范围

  • 25 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 25 篇 工学
    • 19 篇 计算机科学与技术...
    • 10 篇 电气工程
    • 5 篇 信息与通信工程
    • 4 篇 软件工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 控制科学与工程
    • 1 篇 石油与天然气工程
  • 2 篇 医学
    • 2 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 25 篇 deep learning op...
  • 3 篇 deep learning
  • 3 篇 computational ef...
  • 3 篇 generalization b...
  • 2 篇 computational mo...
  • 2 篇 particle swarm o...
  • 2 篇 multistage qhm
  • 2 篇 sgd momentum
  • 2 篇 accuracy
  • 2 篇 training
  • 2 篇 hyperparameter t...
  • 1 篇 fuzzy logic
  • 1 篇 tahiti lime
  • 1 篇 memory footprint
  • 1 篇 tuning
  • 1 篇 parallel process...
  • 1 篇 object detection
  • 1 篇 scalability
  • 1 篇 neurons
  • 1 篇 information shar...

机构

  • 1 篇 univ virginia ch...
  • 1 篇 univ michigan an...
  • 1 篇 school of automa...
  • 1 篇 natl univ def te...
  • 1 篇 univ ind santand...
  • 1 篇 univ silesia ins...
  • 1 篇 sea ai lab
  • 1 篇 univ chinese aca...
  • 1 篇 amazon web serv ...
  • 1 篇 chinese acad sci...
  • 1 篇 beijing univ pos...
  • 1 篇 natl univ def & ...
  • 1 篇 pohang univ sci ...
  • 1 篇 hamad bin khalif...
  • 1 篇 univ birmingham ...
  • 1 篇 saudi elect univ...
  • 1 篇 aristotle univ t...
  • 1 篇 hanyang univ dep...
  • 1 篇 bosonai santa cl...
  • 1 篇 univ virginia ch...

作者

  • 3 篇 sun jianhui
  • 3 篇 zhang aidong
  • 2 篇 yang ying
  • 2 篇 xun guangxu
  • 1 篇 rao p. kiran
  • 1 篇 tsaregorodtsev a...
  • 1 篇 kim sungkyun
  • 1 篇 kim aeri
  • 1 篇 qolomany basheer
  • 1 篇 belhaouari samir...
  • 1 篇 zhang kaige
  • 1 篇 lee seungju
  • 1 篇 zhang xingzhou
  • 1 篇 alhelaly soha
  • 1 篇 qi heng
  • 1 篇 xie xingyu
  • 1 篇 yang hailong
  • 1 篇 chen kangkang
  • 1 篇 kumar n. jaswant...
  • 1 篇 chelloug samia a...

语言

  • 25 篇 英文
检索条件"主题词=Deep Learning Optimization"
25 条 记 录,以下是11-20 订阅
排序:
Reducing Memory Footprint in deep Network Training by Gradient Space Reutilization  7th
Reducing Memory Footprint in Deep Network Training by Gradie...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Dong, Yiming Lin, Zhouchen Peking Univ Sch Intelligence Sci & Technol State Key Lab Gen Artificial Intelligence Beijing Peoples R China Pazhou Lab Huangpu Guangzhou Guangdong Peoples R China
As deep learning continues to spearhead transformative breakthroughs across various domains, the computational and memory demands for training state-of-the-art models have surged exponentially. This escalation not onl... 详细信息
来源: 评论
Optimizing YOLOv8 for Real-Time Performance in Humanoid Soccer Robots with OpenVINO  26
Optimizing YOLOv8 for Real-Time Performance in Humanoid Socc...
收藏 引用
26th International Electronics Symposium (IES) on Shaping the Future - Society 5.0 and Beyond
作者: Pradana, Erlangga Yudi Aji, Shalahuddin Aditya Abdulrrozaq, Muhammad Amir Alasiry, Ali Husein Risnumawan, Anhar Pitowarno, Endra Politekn Elekt Negeri Surabaya Elect Engn Div Surabaya Indonesia Politekn Elekt Negeri Surabaya Mechatron Engn Div Surabaya Indonesia Politekn Elekt Negeri Surabaya Informat Engn Div Surabaya Indonesia
Humanoid soccer robots require fast and accurate vision systems for effective real-time decision-making. YOLOv8 (You Only Look Once) is a leading deep learning-based object detection method known for its balance of sp... 详细信息
来源: 评论
Jigsaw: Accelerating SpMM with Vector Sparsity on Sparse Tensor Core  24
Jigsaw: Accelerating SpMM with Vector Sparsity on Sparse Ten...
收藏 引用
53rd International Conference on Parallel Processing (ICPP)
作者: Zhang, Kaige Liu, Xiaoyan Yang, Hailong Feng, Tianyu Yang, Xinyu Liu, Yi Luan, Zhongzhi Qian, Depei Beihang Univ Sch Comp Sci & Engn Beijing Peoples R China
As deep learning models continue to grow larger, model pruning is employed to reduce memory footprint and computation complexity, which generates a large number of sparse matrix-matrix multiplication (SpMM) with unstr... 详细信息
来源: 评论
Efficient Sparse Tensor Core Networks for Real-Time Insect Classification in Agriculture  4th
Efficient Sparse Tensor Core Networks for Real-Time Insect C...
收藏 引用
4th International Conference on Advanced Network Technologies and Intelligent Computing-ANTIC-Annual
作者: Rao, P. Kiran Prakash, P. Suman Kumar, N. Jaswanth Reddy, V. Kartheek Kumar, Arigela Satheesh Rajeev Gandhi Mem Coll Engn & Technol Dept CSE Data Sci Nandyal Andra Pradesh India G Pullaiah Coll Engn & Technol Autonomus Dept CSE Data Sci Kurnool Andra Pradesh India
deep learning has become a powerful tool for various image-based applications, including the detection of agricultural pests. However, the deployment of deep neural networks in resource-constrained agricultural settin... 详细信息
来源: 评论
Optimizing GNN Inference Processing on Very Long Vector Processor  1
收藏 引用
23rd International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP)
作者: Chen, Kangkang Su, Huayou Liu, Chaorun Li, Yalin Natl Univ Def & Technol Changsha Hunan Peoples R China
Graph Neural Network (GNN) has shown great success in graph learning. However, within the complexity of the real-world tasks and the big graph datasets, current GNN models become increasingly bigger and more complicat... 详细信息
来源: 评论
Adaptive FSP: Adaptive Architecture Search with Filter Shape Pruning  16th
Adaptive FSP: Adaptive Architecture Search with Filter Shape...
收藏 引用
16th Asian Conference on Computer Vision (ACCV)
作者: Kim, Aeri Lee, Seungju Kwon, Eunji Kang, Seokhyeong Pohang Univ Sci & Technol Dept Elect Engn Pohang South Korea
deep Convolutional Neural Networks (CNNs) have high memory footprint and computing power requirements, making their deployment in embedded devices difficult. Network pruning has received attention in reducing those re... 详细信息
来源: 评论
An integrated machine learning and metaheuristic approach for advanced packed bed latent heat storage system design and optimization
收藏 引用
ENERGY 2024年 297卷
作者: Anagnostopoulos, Argyrios Xenitopoulos, Theofilos Ding, Yulong Seferlis, Panos Aristotle Univ Thessaloniki Dept Mech Engn POB 454 Thessaloniki 54124 Greece Univ Silesia Inst Chem PL-40006 Katowice Poland Univ Birmingham Birmingham Ctr Energy Storage Birmingham B15 2TT England Univ Birmingham Sch Chem Engn Birmingham B15 2TT England
To tackle the challenge of waste heat recovery in the industrial sector, this research presents a novel design and optimization framework for Packed Bed Latent Heat Storage Systems (PBLHS). This features a deep Learni... 详细信息
来源: 评论
End-to-End Compressive Spectral Classification: A deep learning Approach Applied to the Grading of Tahiti Lime  2nd
End-to-End Compressive Spectral Classification: A Deep Learn...
收藏 引用
2nd International Conference on Smart Technologies, Systems and Applications (SmartTech-IC)
作者: Silva-Maldonado, Mauricio Galvis, Laura Arguello, Henry Univ Ind Santander Dept Comp Sci Bucaramanga Colombia
Compressed sensing (CS) theory enables the reconstruction of spectral images (SI) using a lower number of measurements than the traditional Shannon-Nyquist sampling approach, through compressive spectral imaging (CSI)... 详细信息
来源: 评论
Improving Inference Time of deep learning Model with Partial Skip of ReLU-fused Matrix Multiplication Operations
Improving Inference Time of Deep Learning Model with Partial...
收藏 引用
International Conference on Electronics, Information, and Communication (ICEIC)
作者: Kim, Sungkyun Kim, Jaemin Kim, Nahun Kang, Mincheal Seo, Jiwon Hanyang Univ Dept Comp Sci Seoul South Korea Hanyang Univ Dept Artificial Intelligence Seoul South Korea McKinsey & Co Inc Tokyo Japan
deep learning has been expanding its application, while large-scale models tend to perform well. However, as such a model inevitably requires a vast amount of resources and computations, lengthy inference time is a cr... 详细信息
来源: 评论
Demystify Hyperparameters for Stochastic optimization with Transferable Representations  22
Demystify Hyperparameters for Stochastic Optimization with T...
收藏 引用
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KKD)
作者: Sun, Jianhui Huai, Mengdi Jha, Kishlay Zhang, Aidong Univ Virginia Charlottesville VA 22903 USA
This paper studies the convergence and generalization of a large class of Stochastic Gradient Descent (SGD) momentum schemes, in both learning from scratch and transferring representations with fine-tuning. Momentum-b... 详细信息
来源: 评论