咨询与建议

限定检索结果

文献类型

  • 421 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 432 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 432 篇 工学
    • 419 篇 电气工程
    • 418 篇 控制科学与工程
    • 13 篇 计算机科学与技术...
    • 5 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 432 篇 deep learning fo...
  • 76 篇 feature extracti...
  • 64 篇 three-dimensiona...
  • 58 篇 object detection
  • 52 篇 training
  • 51 篇 visual learning
  • 46 篇 task analysis
  • 42 篇 localization
  • 42 篇 computer vision ...
  • 40 篇 semantic scene u...
  • 40 篇 deep learning me...
  • 40 篇 rgb-d perception
  • 39 篇 cameras
  • 38 篇 segmentation and...
  • 38 篇 semantics
  • 38 篇 computer vision ...
  • 36 篇 robots
  • 35 篇 visualization
  • 30 篇 recognition
  • 29 篇 point cloud comp...

机构

  • 6 篇 google ch-8002 z...
  • 5 篇 univ bonn d-5311...
  • 5 篇 korea adv inst s...
  • 5 篇 zhejiang univ co...
  • 5 篇 tech univ munich...
  • 4 篇 univ tubingen d-...
  • 4 篇 keio univ yokoha...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ chinese aca...
  • 4 篇 nyu brooklyn ny ...
  • 3 篇 univ michigan an...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 natl univ def te...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 southeast univ s...
  • 3 篇 toyota res inst ...
  • 3 篇 univ perugia dep...
  • 3 篇 alibaba grp peop...

作者

  • 8 篇 tombari federico
  • 8 篇 giusti alessandr...
  • 8 篇 stachniss cyrill
  • 7 篇 behley jens
  • 7 篇 sugiura komei
  • 6 篇 caputo barbara
  • 5 篇 guzzi jerome
  • 5 篇 seo seung-woo
  • 5 篇 weyler jan
  • 5 篇 navab nassir
  • 5 篇 hutter marco
  • 5 篇 wu jun
  • 5 篇 xiang zhiyu
  • 5 篇 valada abhinav
  • 4 篇 shin ukcheol
  • 4 篇 van gool luc
  • 4 篇 gambardella luca...
  • 4 篇 nava mirko
  • 4 篇 garg sourav
  • 4 篇 wang yue

语言

  • 432 篇 英文
检索条件"主题词=Deep Learning for Visual Perception"
432 条 记 录,以下是1-10 订阅
排序:
A Modern Take on visual Relationship Reasoning for Grasp Planning
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第2期10卷 1712-1719页
作者: Rabino, Paolo Tommasi, Tatiana Politecn Torino Dept Control & Comp Engn I-10129 Turin Italy
Interacting with real-world cluttered scenes poses several challenges to robotic agents that need to understand complex spatial dependencies among the observed objects to determine optimal pick sequences or efficient ... 详细信息
来源: 评论
Uncertainty-Aware Real-Time visual Anomaly Detection With Conformal Prediction in Dynamic Indoor Environments
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第5期10卷 4468-4475页
作者: Saboury, Arya Uyguroglu, Mustafa Kemal Eastern Mediterranean Univ Dept Elect & Elect Engn TR-99628 Mersin Turkiye
This letter presents an efficient visual anomaly detection framework designed for safe autonomous navigation in dynamic indoor environments, such as university hallways. The approach employs an unsupervised autoencode... 详细信息
来源: 评论
DORec: Decomposed Object Reconstruction and Segmentation Utilizing 2D Self-Supervised Features
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第1期10卷 804-811页
作者: Wu, Jun Li, Sicheng Ji, Sihui Yang, Yifei Wang, Yue Xiong, Rong Liao, Yiyi Zhejiang Univ Hangzhou 310027 Peoples R China
Recovering 3D geometry and textures of individual objects is crucial for many robotics applications, such as manipulation, pose estimation, and autonomous driving. However, decomposing a target object from a complex b... 详细信息
来源: 评论
How to Relieve Distribution Shifts in Semantic Segmentation for Off-Road Environments
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第5期10卷 4500-4507页
作者: Hwang, Ji-Hoon Kim, Daeyoung Yoon, Hyung-Suk Kim, Dong-Wook Seo, Seung-Woo Seoul Natl Univ Dept Elect & Comp Engn ASRI INMC Seoul 151742 South Korea Seoul Natl Univ Inst Engn Res Seoul 151742 South Korea
Semantic segmentation is crucial for autonomous navigation in off-road environments, enabling precise classification of surroundings to identify traversable regions. However, distinctive factors inherent to off-road c... 详细信息
来源: 评论
Enhanced Surface Reconstruction and Semantic Segmentation of LiDAR Data in Autonomous Vehicle perception Systems
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2025年 第6期26卷 7833-7842页
作者: Prathiba, Sahaya Beni Kumar, Suriya Kumar Raghu Anandhan, deepak Kumar Kumar, Aditya Saran Shyam Selvaraj, Arikumar K. Rodrigues, Joel J. P. C. Vellore Inst Technol Ctr Cyber Phys Syst Sch Comp Sci & Engn Chennai 600127 India Vellore Inst Technol Sch Comp Sci & Engn Chennai 600127 India St Josephs Inst Technol Dept Comp Sci & Engn Chennai 600119 India SRM Inst Sci & Technol SRMIST Coll Engn & Technol Dept Data Sci & Business Syst Kattankulathur 603203 India Fed Univ Piaui UFPI Dept Elect Engn BR-60160194 Teresina Piaui Brazil
Autonomous Vehicles (AVs) are redefining the transportation sector through their ability to navigate, make decisions, and complete autonomous tasks. For accurate perception and comprehension of the surroundings, the A... 详细信息
来源: 评论
CSCPR: Cross-Source-Context Indoor RGB-D Place Recognition
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第5期10卷 4628-4635页
作者: Liang, Jing Deng, Zhuo Zhou, Zheming Sun, Min Ghasemalizadeh, Omid Kuo, Cheng-Hao Sen, Arnie Manocha, Dinesh Univ Maryland College Pk MD 20742 USA Amazon Bellevue WA 98004 USA
We extend our previous work, PoCo (Liang et al. 2024), and present a new algorithm, Cross-Source-Context Place Recognition (CSCPR), for RGB-D indoor place recognition that integrates global retrieval and reranking int... 详细信息
来源: 评论
deep Modeling of Non-Gaussian Aleatoric Uncertainty
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第1期10卷 660-667页
作者: Acharya, Aastha Lee, Caleb D'Alonzo, Marissa Shamwell, Jared Ahmed, Nisar R. Russell, Rebecca Charles Stark Draper Lab Inc Cambridge MA 02139 USA Univ Colorado Boulder Ann & H J Smead Dept Aerosp Engn Sci Boulder CO 80303 USA
deep learning offers promising new ways to accurately model aleatoric uncertainty in robotic state estimation systems, particularly when the uncertainty distributions do not conform to traditional assumptions of being... 详细信息
来源: 评论
PACER: Preference-Conditioned All-Terrain Costmap Generation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第5期10卷 4572-4579页
作者: Mao, Luisa Warnell, Garrett Stone, Peter Biswas, Joydeep Univ Texas Austin Dept Comp Sci Austin TX 78712 USA DEVCOM Army Res Lab Austin TX 78712 USA Sony AI Boston MA 02129 USA NVIDIA Santa Clara CA 95051 USA
In autonomous robot navigation, terrain cost assignment is typically performed using a semantics-based paradigm in which terrain is first labeled using a pre-trained semantic classifier and costs are then assigned acc... 详细信息
来源: 评论
MonoSG: Monocular 3D Object Detection With Stereo Guidance
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第4期10卷 3604-3611页
作者: Fan, Zhiwei Xu, Chao Chu, Minghang Huang, Yuling Ma, Yaoyao Wang, Jing Xu, Yishen Wu, Di Soochow Univ Sch Optoelect Sci & Engn Suzhou 215006 Peoples R China Aispeech Dept Res & Dev Suzhou 215006 Peoples R China Suzhou City Univ Sch Opt & Elect Informat Suzhou 215104 Peoples R China
In the context of autonomous driving, monocular 3D detection is regarded as a fundamental and essential task due to its convenience, speed, and low cost. However, the lack of depth information in monocular images pres... 详细信息
来源: 评论
RecGS: Removing Water Caustic With Recurrent Gaussian Splatting
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第1期10卷 668-675页
作者: Zhang, Tianyi Zhi, Weiming Meyers, Braden Durrant, Nelson Huang, Kaining Mangelson, Joshua Barbalata, Corina Johnson-Roberson, Matthew Carnegie Mellon Univ Robot Inst Sch Comp Sci Pittsburgh PA 15213 USA Brigham Young Univ Dept Elect & Comp Engn Provo UT 84602 USA Louisiana State Univ Dept Mech & Ind Engn Baton Rouge LA 70803 USA
Water caustics are commonly observed in seafloor imaging data from shallow-water areas. Traditional methods that remove caustic patterns from images often rely on 2D filtering or pre-training on an annotated dataset, ... 详细信息
来源: 评论