咨询与建议

限定检索结果

文献类型

  • 421 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 432 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 432 篇 工学
    • 419 篇 电气工程
    • 418 篇 控制科学与工程
    • 13 篇 计算机科学与技术...
    • 5 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 432 篇 deep learning fo...
  • 76 篇 feature extracti...
  • 64 篇 three-dimensiona...
  • 58 篇 object detection
  • 52 篇 training
  • 51 篇 visual learning
  • 46 篇 task analysis
  • 42 篇 localization
  • 42 篇 computer vision ...
  • 40 篇 semantic scene u...
  • 40 篇 deep learning me...
  • 40 篇 rgb-d perception
  • 39 篇 cameras
  • 38 篇 segmentation and...
  • 38 篇 semantics
  • 38 篇 computer vision ...
  • 36 篇 robots
  • 35 篇 visualization
  • 30 篇 recognition
  • 29 篇 point cloud comp...

机构

  • 6 篇 google ch-8002 z...
  • 5 篇 univ bonn d-5311...
  • 5 篇 korea adv inst s...
  • 5 篇 zhejiang univ co...
  • 5 篇 tech univ munich...
  • 4 篇 univ tubingen d-...
  • 4 篇 keio univ yokoha...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ chinese aca...
  • 4 篇 nyu brooklyn ny ...
  • 3 篇 univ michigan an...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 natl univ def te...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 southeast univ s...
  • 3 篇 toyota res inst ...
  • 3 篇 univ perugia dep...
  • 3 篇 alibaba grp peop...

作者

  • 8 篇 tombari federico
  • 8 篇 giusti alessandr...
  • 8 篇 stachniss cyrill
  • 7 篇 behley jens
  • 7 篇 sugiura komei
  • 6 篇 caputo barbara
  • 5 篇 guzzi jerome
  • 5 篇 seo seung-woo
  • 5 篇 weyler jan
  • 5 篇 navab nassir
  • 5 篇 hutter marco
  • 5 篇 wu jun
  • 5 篇 xiang zhiyu
  • 5 篇 valada abhinav
  • 4 篇 shin ukcheol
  • 4 篇 van gool luc
  • 4 篇 gambardella luca...
  • 4 篇 nava mirko
  • 4 篇 garg sourav
  • 4 篇 wang yue

语言

  • 432 篇 英文
检索条件"主题词=Deep Learning for Visual Perception"
432 条 记 录,以下是91-100 订阅
排序:
Exploiting Depth Priors for Few-Shot Neural Radiance Field Reconstruction
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2024年 第11期9卷 9844-9851页
作者: Chen, Shuya Li, Zheyang Zhu, Hao Tan, Wenming Ren, Ye Xiang, Zhiyu Hikvis Res Inst Hangzhou 310000 Peoples R China Zhejiang Univ Coll Informat Sci & Elect Engn Hangzhou 310000 Peoples R China Zhejiang Univ Zhejiang Prov Key Lab Informat Proc Commun & Netwo Hangzhou 310000 Peoples R China
The performance of neural radiance field technologies deteriorates rapidly when sparse views are used as input. In this paper, we propose a simulated viewpoint enhancement for surface reconstruction that extracts dive... 详细信息
来源: 评论
MP6D: An RGB-D Dataset for Metal Parts' 6D Pose Estimation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 5912-5919页
作者: Chen, Long Yang, Han Wu, Chenrui Wu, Shiqing Univ Shanghai Sci & Technol Dept Mech Engn Shanghai 200093 Peoples R China
We introduce MP6D, a public dataset which is used for 6D pose estimation of Metal Parts in industrial environments. The dataset consists of 20 metal parts made of aluminum alloy material which are commonly used in fac... 详细信息
来源: 评论
AiSDF: Structure-Aware Neural Signed Distance Fields in Indoor Scenes
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2024年 第5期9卷 4106-4113页
作者: Jang, Jaehoon Lee, Inha Kim, Minje Joo, Kyungdon UNIST Artificial Intelligence Grad Sch Ulsan South Korea UNIST Dept Comp Sci & Engn Ulsan South Korea
Indoor scenes we are living in are visually homogenous or textureless, while they inherently have structural forms and provide enough structural priors for 3D scene reconstruction. Motivated by this fact, we propose a... 详细信息
来源: 评论
KVN: Keypoints Voting Network With Differentiable RANSAC for Stereo Pose Estimation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2024年 第4期9卷 3498-3505页
作者: Donadi, Ivano Pretto, Alberto Univ Padua Dept Informat Engn I-35131 Padua Italy
Object pose estimation is a fundamental computer vision task exploited in several robotics and augmented reality applications. Many established approaches rely on predicting 2D-3D keypoint correspondences using RANSAC... 详细信息
来源: 评论
Mono-Camera-Only Target Chasing for a Drone in a Dense Environment by Cross-Modal learning
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2024年 第8期9卷 7254-7261页
作者: Yoo, Seungyeon Jung, Seungwoo Lee, Yunwoo Shim, Dongseok Kim, H. Jin Seoul Natl Univ Automat & Syst Res Inst Dept Aerosp Engn Seoul 08826 South Korea Seoul Natl Univ Artificial Intelligence Inst SNU Seoul 08826 South Korea Seoul Natl Univ Interdisciplinary Program AI Seoul 08826 South Korea
Chasing a dynamic target in a dense environment is one of the challenging applications of autonomous drones. The task requires multi-modal data, such as RGB and depth, to accomplish safe and robust maneuver. However, ... 详细信息
来源: 评论
visual-Tactile Cross-Modal Data Generation Using Residue-Fusion GAN With Feature-Matching and Perceptual Losses
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 7525-7532页
作者: Cai, Shaoyu Zhu, Kening Ban, Yuki Narumi, Takuji City Univ Hong Kong Sch Creat Media Hong Kong Peoples R China City Univ Hong Kong Shenzhen Res Inst Shenzhen Peoples R China Univ Tokyo Grad Sch Frontier Sci Chiba Japan Univ Tokyo Grad Sch Informat Sci & Technol Tokyo Japan JST PRESTO Tokyo Japan
Existing psychophysical studies have revealed that the cross-modal visual-tactile perception is common for humans performing daily activities. However, it is still challenging to build the algorithmic mapping from one... 详细信息
来源: 评论
Active Visuo-Haptic Object Shape Completion
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 5254-5261页
作者: Rustler, Lukas Lundell, Jens Behrens, Jan Kristof Kyrki, Ville Hoffmann, Matej Czech Tech Univ Fac Elect Engn Dept Cybernet Prague 16636 Czech Republic Aalto Univ Sch Elect Engn Dept Elect Engn & Automat Intelligent Robot Grp Espoo 02150 Finland Czech Tech Univ Czech Inst Informat Robot & Cybernet Prague 16636 Czech Republic
Recent advancements in object shape completion have enabled impressive object reconstructions using only visual input. However, due to self-occlusion, the reconstructions have high uncertainty in the occluded object p... 详细信息
来源: 评论
State-Consistency Loss for learning Spatial perception Tasks From Partial Labels
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 1112-1119页
作者: Nava, Mirko Gambardella, Luca Maria Giusti, Alessandro Dalle Molle Inst Artificial Intelligence IDSIA USI SUPSI CH-6928 Lugano Switzerland
When learning models for real-world robot spatial perception tasks, one might have access only to partial labels: this occurs for example in semi-supervised scenarios (in which labels are not available for a subset of... 详细信息
来源: 评论
Lidar Upsampling With Sliced Wasserstein Distance
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2023年 第1期8卷 392-399页
作者: Savkin, Artem Wang, Yida Wirkert, Sebastian Navab, Nassir Tombari, Federico Tech Univ Munich Sch Computat Informat & Technol Dept Comp Sci D-80333 Munich Germany BMW Grp D-80788 Munich Germany Johns Hopkins Univ Dept Comp Sci Baltimore MD 21218 USA Google CH-8002 Zurich Switzerland
Lidar became an important component of the perception systems in autonomous driving. But challenges of training data acquisition and annotation made emphasized the role of the sensor to sensor domain adaptation. In th... 详细信息
来源: 评论
learning Keypoints for Robotic Cloth Manipulation Using Synthetic Data
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2024年 第7期9卷 6528-6535页
作者: Lips, Thomas De Gusseme, Victor-Louis Wyffels, Francis Ghent Univ Imec AI & Robot Lab IDLab AIRO B-9052 Zwijnaarde Belgium
Assistive robots should be able to wash, fold or iron clothes. However, due to the variety, deformability and self-occlusions of clothes, creating robot systems for cloth manipulation is challenging. Synthetic data is... 详细信息
来源: 评论