咨询与建议

限定检索结果

文献类型

  • 421 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 432 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 432 篇 工学
    • 419 篇 电气工程
    • 418 篇 控制科学与工程
    • 13 篇 计算机科学与技术...
    • 5 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 432 篇 deep learning fo...
  • 76 篇 feature extracti...
  • 64 篇 three-dimensiona...
  • 58 篇 object detection
  • 52 篇 training
  • 51 篇 visual learning
  • 46 篇 task analysis
  • 42 篇 localization
  • 42 篇 computer vision ...
  • 40 篇 semantic scene u...
  • 40 篇 deep learning me...
  • 40 篇 rgb-d perception
  • 39 篇 cameras
  • 38 篇 segmentation and...
  • 38 篇 semantics
  • 38 篇 computer vision ...
  • 36 篇 robots
  • 35 篇 visualization
  • 30 篇 recognition
  • 29 篇 point cloud comp...

机构

  • 6 篇 google ch-8002 z...
  • 5 篇 univ bonn d-5311...
  • 5 篇 korea adv inst s...
  • 5 篇 zhejiang univ co...
  • 5 篇 tech univ munich...
  • 4 篇 univ tubingen d-...
  • 4 篇 keio univ yokoha...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ chinese aca...
  • 4 篇 nyu brooklyn ny ...
  • 3 篇 univ michigan an...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 natl univ def te...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 southeast univ s...
  • 3 篇 toyota res inst ...
  • 3 篇 univ perugia dep...
  • 3 篇 alibaba grp peop...

作者

  • 8 篇 tombari federico
  • 8 篇 giusti alessandr...
  • 8 篇 stachniss cyrill
  • 7 篇 behley jens
  • 7 篇 sugiura komei
  • 6 篇 caputo barbara
  • 5 篇 guzzi jerome
  • 5 篇 seo seung-woo
  • 5 篇 weyler jan
  • 5 篇 navab nassir
  • 5 篇 hutter marco
  • 5 篇 wu jun
  • 5 篇 xiang zhiyu
  • 5 篇 valada abhinav
  • 4 篇 shin ukcheol
  • 4 篇 van gool luc
  • 4 篇 gambardella luca...
  • 4 篇 nava mirko
  • 4 篇 garg sourav
  • 4 篇 wang yue

语言

  • 432 篇 英文
检索条件"主题词=Deep Learning for Visual Perception"
432 条 记 录,以下是131-140 订阅
排序:
Weakly Supervised Disentangled Representation for Goal-Conditioned Reinforcement learning
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 2202-2209页
作者: Qian, Zhifeng You, Mingyu Zhou, Hongjun He, Bin Tongji Univ Coll Elect & Informat Engn Frontiers Sci Ctr Intelligent Autonomous Syst Shanghai 201800 Peoples R China
Goal-conditioned reinforcement learning is a crucial yet challenging algorithm which enables agents to achieve multiple user-specified goals when learning a set of skills in a dynamic environment. However, it typicall... 详细信息
来源: 评论
High-Speed Detector for Low-Powered Devices in Aerial Grasping
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2024年 第5期9卷 4623-4630页
作者: Kumar, Ashish Behera, Laxmidhar Indian Inst Technol IIT EE Kanpur 208016 India
Autonomous aerial harvesting is a highly complex problem because it requires numerous interdisciplinary algorithms to be executed on mini low-powered computing devices. Object detection is one such algorithm that is c... 详细信息
来源: 评论
UniFuse: Unidirectional Fusion for 360° Panorama Depth Estimation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 1519-1526页
作者: Jiang, Hualie Sheng, Zhe Zhu, Siyu Dong, Zilong Huang, Rui Chinese Univ Hong Kong Shenzhen Inst Artificial Intelligence & Robot Soc Shenzhen 518172 Guangdong Peoples R China Alibaba Cloud AI Lab Hangzhou 311121 Zhejiang Peoples R China
learning depth from spherical panoramas is becoming a popular research topic because a panorama has a full field-of-view of the environment and provides a relatively complete description of a scene. However, applying ... 详细信息
来源: 评论
OSSID: Online Self-Supervised Instance Detection by (And For) Pose Estimation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 3022-3029页
作者: Gu, Qiao Okorn, Brian Held, David Univ Toronto Dept Comp Sci Toronto ON M5S 1A1 Canada Carnegie Mellon Univ Robot Inst Pittsburgh PA 15214 USA
Real-time object pose estimation is necessary for many robot manipulation algorithms. However, state-of-the-art methods for object pose estimation are trained for a specific set of objects;these methods thus need to b... 详细信息
来源: 评论
What's in the Black Box? The False Negative Mechanisms Inside Object Detectors
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 8510-8517页
作者: Miller, Dimity Moghadam, Peyman Cox, Mark Wildie, Matt Jurdak, Raja CSIRO DATA61 Robot & Autonomous Syst Grp Brisbane Qld 4069 Australia Queensland Univ Technol QUT Trusted Networks Lab Brisbane Qld 4000 Australia
In object detection, false negatives arise when a detector fails to detect a target object. To understand why object detectors produce false negatives, we identify five 'false negative mechanisms,' where each ... 详细信息
来源: 评论
Domain and View-Point Agnostic Hand Action Recognition
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 7823-7830页
作者: Sabater, Alberto Alonso, Inigo Montesano, Luis Murillo, Ana Cristina Univ Zaragoza DIIS I3A Zaragoza 50018 Spain Bitbrain Technol Zaragoza 50008 Spain
Hand action recognition is a special case of action recognition with applications in human-robot interaction, virtual reality or life-logging systems. Building action classifiers able to work for such heterogeneous ac... 详细信息
来源: 评论
Uncertainty-Aware Self-Supervised learning of Spatial perception Tasks
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 6693-6700页
作者: Nava, Mirko Paolillo, Antonio Guzzi, Jerome Gambardella, Luca Maria Giusti, Alessandro USI SUPSI Dalle Molle Inst Artificial Intelligence IDSIA CH-6928 Lugano Switzerland
We propose a general self-supervised learning approach for spatial perception tasks, such as estimating the pose of an object relative to the robot, from onboard sensor readings. The model is learned from training epi... 详细信息
来源: 评论
Cross-View Semantic Segmentation for Sensing Surroundings
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第3期5卷 4867-4873页
作者: Pan, Bowen Sun, Jiankai Leung, Ho Yin Tiga Andonian, Alex Zhou, Bolei MIT Comp Sci & Artificial Intelligence Lab 77 Massachusetts Ave Cambridge MA 02139 USA Chinese Univ Hong Kong Dept Informat Engn Hong Kong Peoples R China
Sensing surroundings plays a crucial role in human spatial perception, as it extracts the spatial configuration of objects as well as the free space from the observations. To facilitate the robot perception with such ... 详细信息
来源: 评论
Edge Devices Friendly Self-Supervised Monocular Depth Estimation via Knowledge Distillation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2023年 第12期8卷 8470-8477页
作者: Gao, Wei Rao, Di Yang, Yang Chen, Jie Jiangsu Univ Sch Comp Sci & Telecommun Engn Zhenjiang 212013 Peoples R China Northwestern Polytech Univ Sch Marine Sci & Technol CIAIC Xian 710072 Peoples R China
Self-supervised monocular depth estimation (MDE) has great potential for deployment in a wide range of applications, including virtual reality, autonomous driving, and robotics. Nevertheless, most previous studies foc... 详细信息
来源: 评论
Autonomous Single-Image Drone Exploration With deep Reinforcement learning and Mixed Reality
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 5031-5038页
作者: Devo, Alessandro Mao, Jeffrey Costante, Gabriele Loianno, Giuseppe Univ Perugia Dept Engn I-06125 Perugia Italy NYU Tandon Sch Engn Brooklyn NY 11201 USA
Autonomous exploration is a longstanding goal of the robotics community. Aerial drone navigation has proven to be especially challenging. The stringent requirements on cost, weight, maneuverability, and power consumpt... 详细信息
来源: 评论