咨询与建议

限定检索结果

文献类型

  • 425 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 436 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 436 篇 工学
    • 423 篇 电气工程
    • 421 篇 控制科学与工程
    • 12 篇 计算机科学与技术...
    • 6 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 436 篇 deep learning fo...
  • 77 篇 feature extracti...
  • 67 篇 three-dimensiona...
  • 58 篇 object detection
  • 55 篇 training
  • 51 篇 visual learning
  • 46 篇 task analysis
  • 42 篇 localization
  • 42 篇 computer vision ...
  • 41 篇 cameras
  • 40 篇 semantic scene u...
  • 40 篇 deep learning me...
  • 40 篇 rgb-d perception
  • 39 篇 robots
  • 38 篇 segmentation and...
  • 38 篇 semantics
  • 38 篇 computer vision ...
  • 36 篇 visualization
  • 31 篇 point cloud comp...
  • 30 篇 recognition

机构

  • 6 篇 google ch-8002 z...
  • 5 篇 univ bonn d-5311...
  • 5 篇 korea adv inst s...
  • 5 篇 zhejiang univ co...
  • 5 篇 tech univ munich...
  • 4 篇 univ tubingen d-...
  • 4 篇 keio univ yokoha...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ chinese aca...
  • 4 篇 nyu brooklyn ny ...
  • 3 篇 univ michigan an...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 natl univ def te...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 southeast univ s...
  • 3 篇 toyota res inst ...
  • 3 篇 univ perugia dep...
  • 3 篇 alibaba grp peop...

作者

  • 8 篇 tombari federico
  • 8 篇 giusti alessandr...
  • 8 篇 stachniss cyrill
  • 7 篇 behley jens
  • 7 篇 sugiura komei
  • 6 篇 caputo barbara
  • 5 篇 guzzi jerome
  • 5 篇 seo seung-woo
  • 5 篇 weyler jan
  • 5 篇 navab nassir
  • 5 篇 hutter marco
  • 5 篇 wu jun
  • 5 篇 xiang zhiyu
  • 5 篇 valada abhinav
  • 4 篇 shin ukcheol
  • 4 篇 van gool luc
  • 4 篇 gambardella luca...
  • 4 篇 nava mirko
  • 4 篇 garg sourav
  • 4 篇 wang yue

语言

  • 436 篇 英文
检索条件"主题词=Deep Learning for Visual Perception"
436 条 记 录,以下是11-20 订阅
排序:
LiDAR semantic segmentation with local consistency constrained KPConv LSTM
收藏 引用
NEUROCOMPUTING 2025年 626卷
作者: Bai, Tingming Xiang, Zhiyu Zhao, Xijun Xu, Peng Pu, Tianyu Fu, Jingyun Zhejiang Univ Coll Informat Sci & Elect Engn Hangzhou 310027 Zhejiang Peoples R China China North Artificial Intelligence & Innovat Res Beijing 100072 Peoples R China
Asa fundamental task for autonomous driving, LiDAR point cloud semantic segmentation has been intensively studied in recent years. Despite the great progress, achieving satisfactory semantic segmentation is still very... 详细信息
来源: 评论
H-PCC: Point Cloud Compression With Hybrid Mode Selection and Content Adaptive Down-Sampling
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第4期10卷 3054-3061页
作者: Liu, Bowen Chen, Yu Wang, Boyang Yang, Mingyu Kim, Hun-Seok Univ Michigan EECS Dept Ann Arbor MI 48109 USA
LiDAR sensors are integral to autonomous driving and augmented reality applications, providing essential depth information. However, managing the substantial volume of LiDAR point cloud data is crucial for practical a... 详细信息
来源: 评论
Multimodal Target Localization With Landmark-Aware Positioning for Urban Mobility
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第1期10卷 716-723页
作者: Hosomi, Naoki Iioka, Yui Hatanaka, Shumpei Misu, Teruhisa Yamada, Kentaro Tsukamoto, Nanami Kobayashi, Shunsuke Sugiura, Komei Keio Univ Minato Kanagawa 2238522 Japan Honda Res & Dev Co Ltd Tokyo 1076238 Japan Honda Res Inst USA Inc San Jose CA 95134 USA SOLIZE Corp Tokyo 1020075 Japan
Advancements in vehicle automation technology are expected to significantly impact how humans interact with vehicles. In this study, we propose a method to create user-friendly control interfaces for autonomous vehicl... 详细信息
来源: 评论
BEVCon: Advancing Bird's Eye View perception With Contrastive learning
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第4期10卷 3158-3165页
作者: Leng, Ziyang Yang, Jiawei Ren, Zhicheng Zhou, Bolei Univ Calif Los Angeles Los Angeles CA 90095 USA Univ Southern Calif Los Angeles CA 90007 USA Aurora Innovat Mountain View CA 94043 USA
We present BEVCon, a simple yet effective contrastive learning framework designed to improve Bird's Eye View (BEV) perception in autonomous driving. BEV perception offers a top-down-view representation of the surr... 详细信息
来源: 评论
LBSNet: Lightweight Joint Boundary Detection and Semantic Segmentation for Transparent and Reflective Objects
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第2期10卷 955-962页
作者: Tong, Ling Qian, Kun Jing, Xingshuo Southeast Univ Sch Automat Nanjing 210096 Peoples R China Minist Educ Key Lab Measurement & Control CSE Nanjing 210096 Peoples R China Southeast Univ Shenzhen Res Inst Shenzhen 518063 Peoples R China
Accurate visual detection of transparent and reflective objects remains a challenging issue for mobile manipulators. For the most common depth cameras and LiDAR sensors, the distinctive optical attributes inherent in ... 详细信息
来源: 评论
W-ControlUDA: Weather-Controllable Diffusion-assisted Unsupervised Domain Adaptation for Semantic Segmentation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第5期10卷 4204-4211页
作者: Shen, Fengyi Zhou, Li Kuecuekaytekin, Kagan Eskandar, George Basem Fouad Liu, Ziyuan Wang, He Knoll, Alois Tech Univ Munich D-80333 Munich Germany Huawei Munich Res Ctr D-80992 Munich Germany Peking Univ EPIC Lab Beijing 100871 Peoples R China Galbot Beijing 100871 Peoples R China
Image generation has emerged as a potent strategy to enrich training data for unsupervised domain adaptation (UDA) of semantic segmentation in adverse weathers due to the scarcity of labelled target domain data. Previ... 详细信息
来源: 评论
Sparse Prototype Network for Explainable Pedestrian Behavior Prediction
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第5期10卷 4196-4203页
作者: Feng, Yan Carballo, Alexander Takeda, Kazuya Nagoya Univ Grad Sch Informat Nagoya Aichi 4648601 Japan Nagoya Univ Inst Innovat Future Soc Nagoya Aichi 4648601 Japan Gifu Univ Fac Engn Grad Sch Engn Gifu 5011193 Japan Nagoya Univ Tier IV Inc Open Innovat Ctr Nagoya 4506610 Japan
Predicting pedestrian behavior is challenging yet crucial for applications such as autonomous driving and smart cities. Recent deep learning models have achieved remarkable performance in making accurate predictions, ... 详细信息
来源: 评论
SCDA-Net: Structure Completion and Density Awareness Network for LiDAR-Based 3D Object Detection
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第5期10卷 4268-4275页
作者: Wu, Shuwen Yang, Jinfu Ma, Jiaqi Zhang, Shaochen Hao, Tianhao Li, Mingai Beijing Univ Technol Sch Informat Sci & Technol Beijing 100124 Peoples R China
As a fundamental task in various application scenarios, including autonomous driving and mobile robotic systems, 3D object detection has received extensive attention from researchers in both academia and industry. How... 详细信息
来源: 评论
DecTrain: Deciding When to Train a Monocular Depth DNN Online
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第3期10卷 2822-2829页
作者: Fu, Zih-Sing Sudhakar, Soumya Karaman, Sertac Sze, Vivienne MIT Cambridge MA 02139 USA
deep neural networks (DNNs) can deteriorate in accuracy when deployment data differs from training data. While performing online training at all timesteps can improve accuracy, it is computationally expensive. We prop... 详细信息
来源: 评论
DINOv2-Based UAV visual Self-Localization in Low-Altitude Urban Environments
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第2期10卷 2080-2087页
作者: Yang, Jiaqiang Qin, Danyang Tang, Huapeng Tao, Sili Bie, Haoze Ma, Lin Heilongjiang Univ Coll Elect Engn Harbin 150080 Peoples R China Southeast Univ Natl Mobile Commun Res Lab Nanjing 211102 Peoples R China Harbin Inst Technol Harbin 150080 Peoples R China
visual self-localization technology is essential for unmanned aerial vehicles (UAVs) to achieve autonomous navigation and mission execution in environments where global navigation satellite system (GNSS) signals are u... 详细信息
来源: 评论