咨询与建议

限定检索结果

文献类型

  • 427 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 438 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 438 篇 工学
    • 425 篇 电气工程
    • 423 篇 控制科学与工程
    • 14 篇 计算机科学与技术...
    • 6 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 力学(可授工学、理...
    • 2 篇 机械工程
    • 2 篇 石油与天然气工程
    • 2 篇 软件工程
    • 2 篇 生物工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 交通运输工程
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 438 篇 deep learning fo...
  • 77 篇 feature extracti...
  • 67 篇 three-dimensiona...
  • 59 篇 object detection
  • 55 篇 training
  • 51 篇 visual learning
  • 46 篇 task analysis
  • 43 篇 computer vision ...
  • 42 篇 localization
  • 41 篇 cameras
  • 41 篇 deep learning me...
  • 40 篇 semantic scene u...
  • 40 篇 rgb-d perception
  • 39 篇 segmentation and...
  • 39 篇 robots
  • 38 篇 semantics
  • 38 篇 computer vision ...
  • 36 篇 visualization
  • 31 篇 point cloud comp...
  • 30 篇 recognition

机构

  • 6 篇 google ch-8002 z...
  • 5 篇 univ bonn d-5311...
  • 5 篇 korea adv inst s...
  • 5 篇 zhejiang univ co...
  • 5 篇 tech univ munich...
  • 4 篇 univ tubingen d-...
  • 4 篇 keio univ yokoha...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ chinese aca...
  • 4 篇 nyu brooklyn ny ...
  • 3 篇 univ michigan an...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 natl univ def te...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 southeast univ s...
  • 3 篇 toyota res inst ...
  • 3 篇 univ perugia dep...
  • 3 篇 alibaba grp peop...

作者

  • 8 篇 tombari federico
  • 8 篇 giusti alessandr...
  • 8 篇 stachniss cyrill
  • 7 篇 behley jens
  • 7 篇 sugiura komei
  • 6 篇 caputo barbara
  • 5 篇 guzzi jerome
  • 5 篇 seo seung-woo
  • 5 篇 weyler jan
  • 5 篇 navab nassir
  • 5 篇 hutter marco
  • 5 篇 wu jun
  • 5 篇 xiang zhiyu
  • 5 篇 valada abhinav
  • 4 篇 shin ukcheol
  • 4 篇 van gool luc
  • 4 篇 gambardella luca...
  • 4 篇 nava mirko
  • 4 篇 garg sourav
  • 4 篇 wang yue

语言

  • 438 篇 英文
检索条件"主题词=Deep Learning for Visual Perception"
438 条 记 录,以下是221-230 订阅
排序:
DRO: deep Recurrent Optimizer for Video to Depth
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2023年 第5期8卷 2844-2851页
作者: Gu, Xiaodong Yuan, Weihao Dai, Zuozhuo Zhu, Siyu Tang, Chengzhou Dong, Zilong Tan, Ping Alibaba Grp Hangzhou 330501 Peoples R China Simon Fraser Univ Burnaby BC V5A 1S6 Canada
There are increasing interests of studying the video-to-depth (V2D) problem with machine learning techniques. While earlier methods directly learn a mapping from images to depth maps and camera poses, more recent work... 详细信息
来源: 评论
DYS-SLAM: A real-time RGBD SLAM combined with optical flow and semantic information in a dynamic environment
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023年 第6期45卷 10349-10367页
作者: Fang, Yuhua Xie, Zhijun Chen, Kewei Huang, Guangyan Zarei, Roozbeh Xie, Yuntao Ningbo Univ Sch Fac Elect Engn & Comp Sci Ningbo Peoples R China Ningbo Univ Sch Fac Mech Engn & Mech Ningbo Peoples R China Deakin Univ Sch Informat Technol Melbourne Vic Australia Univ New South Wales Sch Comp Sci & Engn Sydney NSW Australia
Traditional Simultaneous Localization and Mapping application in dynamic situations is constrained by static assumptions. However, the majority of well-known dynamic SLAM systems use deep learning to identify dynamic ... 详细信息
来源: 评论
CSGP: Closed-Loop Safe Grasp Planning via Attention-Based deep Reinforcement learning From Demonstrations
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2023年 第6期8卷 3158-3165页
作者: Tang, Zixin Shi, Yifei Xu, Xin Natl Univ Def Technol Coll Intelligence Sci & Technol Changsha 410073 Peoples R China
Grasping is at the core of many robotic manipulation tasks. Despite the recent progress, closed-loop grasp planning in stacked scenes is still unsatisfactory, in terms of efficiency, stability, and most importantly, s... 详细信息
来源: 评论
Grasp-and-Classify Robotic Sorting With Grasping Rectangle Correction and Weighted Nearest-Neighbor Relation Network
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第6期10卷 6103-6110页
作者: Han, Dongxiao Li, Yuwen Shanghai Univ Sch Mechatron Engn & Automat Shanghai Key Lab Intelligent Mfg & Robot Shanghai 201900 Peoples R China
Robotic sorting in cluttered environments still faces significant challenges, especially with resource-constrained hardware. Traditional detect-and-grasp workflows usually require extensive image collection and annota... 详细信息
来源: 评论
Metrically Scaled Monocular Depth Estimation through Sparse Priors for Underwater Robots
Metrically Scaled Monocular Depth Estimation through Sparse ...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Ebner, Luca Billings, Gideon Williams, Stefan Swiss Fed Inst Technol Robot Syst Lab Zurich Switzerland Univ Sydney Australian Ctr Field Robot Sydney NSW Australia
In this work, we address the problem of real-time dense depth estimation from monocular images for mobile underwater vehicles. We formulate a deep learning model that fuses sparse depth measurements from triangulated ... 详细信息
来源: 评论
Multi-task learning for Real-time Autonomous Driving Leveraging Task-adaptive Attention Generator
Multi-task Learning for Real-time Autonomous Driving Leverag...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Choi, Wonhyeok Shin, Mingyu Lee, Hyukzae Cho, Jaehoon Park, Jaehyeon Im, Sunghoon DGIST Dept Elect Engn & Comp Sci Daegu South Korea DGIST Dept Interdisciplinary Studies Artificial Intelli Daegu South Korea Hyundai Motor Co Autonomous Driving Ctr Seoul South Korea
Real-time processing is crucial in autonomous driving systems due to the imperative of instantaneous decision-making and rapid response. In real-world scenarios, autonomous vehicles are continuously tasked with interp... 详细信息
来源: 评论
PromptTAD: Object-Prompt Enhanced Traffic Anomaly Detection
收藏 引用
IEEE Robotics and Automation Letters 2025年 第7期10卷 7174-7181页
作者: Qiu, Hao Yang, Xiaobo Gong, Xiaojin Zhejiang University College of Information Science and Electronic Engineering Zhejiang Hangzhou 310027 China Zhejiang University Faculty of the College of Information Science and Electronic Engineering Zhejiang Hangzhou 310027 China
Ego-centric Traffic Anomaly Detection (TAD) aims to identify abnormal events in videos captured by dashboard-mounted cameras in vehicles. Compared to anomaly detection in roadside surveillance videos, ego-centric TAD ... 详细信息
来源: 评论
Assessing Monocular Depth Estimation Networks for UAS Deployment in Rainforest Environments
Assessing Monocular Depth Estimation Networks for UAS Deploy...
收藏 引用
2024 International Conference on Intelligent Robots and Systems
作者: Tangellapalli, Srisai Anirudh Peschel, Joshua Sangha, Harman Singh Duncan, Brittany A. Univ Nebraska Nimbus Lab Lincoln NE 68588 USA Iowa State Univ Agr & Biosyst Engn Ames IA USA
The primary objective of this study was to utilize state-of-the-art deep learning-based monocular depth estimation models to assist UAS pilots in rainforest canopy data collection and navigation. Monocular depth estim... 详细信息
来源: 评论
A Real 3D Embodied Dataset for Robotic Active visual learning
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 6646-6652页
作者: Zhao, Qianfan Zhang, Lu Wu, Lingxi Qiao, Hong Liu, Zhiyong Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100190 Peoples R China Chinese Acad Sci Ctr Excellence Brain Sci & Intelligence Technol Shanghai 200031 Peoples R China Univ Calif Santa Barbara Dept Math Coll Letters & Sci Santa Barbara CA 93106 USA
Active interaction with environments is one of the striking characteristics of robotic active vision, which allows robots to move to facilitate visual tasks. Recently, several embodied AI platforms have been proposed ... 详细信息
来源: 评论
Robust Sim2Real 3D Object Classification Using Graph Representations and a deep Center Voting Scheme
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 8028-8035页
作者: Weibel, Jean-Baptiste Patten, Timothy Vincze, Markus TU Wien Vis Robot Lab Automat & Control Inst A-1040 Vienna Austria Univ Technol Sydney Fac Engn & Informat Technol Robot Inst Ultimo 2007 Australia
While object semantic understanding is essential for service robotic tasks, 3D object classification is still an open problem. learning from artificial 3D models alleviates the cost of the annotation necessary to appr... 详细信息
来源: 评论