咨询与建议

限定检索结果

文献类型

  • 426 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 437 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 436 篇 工学
    • 423 篇 电气工程
    • 421 篇 控制科学与工程
    • 12 篇 计算机科学与技术...
    • 6 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 437 篇 deep learning fo...
  • 77 篇 feature extracti...
  • 67 篇 three-dimensiona...
  • 59 篇 object detection
  • 55 篇 training
  • 51 篇 visual learning
  • 46 篇 task analysis
  • 42 篇 localization
  • 42 篇 computer vision ...
  • 41 篇 cameras
  • 40 篇 semantic scene u...
  • 40 篇 deep learning me...
  • 40 篇 rgb-d perception
  • 39 篇 segmentation and...
  • 39 篇 robots
  • 38 篇 semantics
  • 38 篇 computer vision ...
  • 36 篇 visualization
  • 31 篇 point cloud comp...
  • 30 篇 recognition

机构

  • 6 篇 google ch-8002 z...
  • 5 篇 univ bonn d-5311...
  • 5 篇 korea adv inst s...
  • 5 篇 zhejiang univ co...
  • 5 篇 tech univ munich...
  • 4 篇 univ tubingen d-...
  • 4 篇 keio univ yokoha...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ chinese aca...
  • 4 篇 nyu brooklyn ny ...
  • 3 篇 univ michigan an...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 natl univ def te...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 southeast univ s...
  • 3 篇 toyota res inst ...
  • 3 篇 univ perugia dep...
  • 3 篇 alibaba grp peop...

作者

  • 8 篇 tombari federico
  • 8 篇 giusti alessandr...
  • 8 篇 stachniss cyrill
  • 7 篇 behley jens
  • 7 篇 sugiura komei
  • 6 篇 caputo barbara
  • 5 篇 guzzi jerome
  • 5 篇 seo seung-woo
  • 5 篇 weyler jan
  • 5 篇 navab nassir
  • 5 篇 hutter marco
  • 5 篇 wu jun
  • 5 篇 xiang zhiyu
  • 5 篇 valada abhinav
  • 4 篇 shin ukcheol
  • 4 篇 van gool luc
  • 4 篇 gambardella luca...
  • 4 篇 nava mirko
  • 4 篇 garg sourav
  • 4 篇 wang yue

语言

  • 437 篇 英文
检索条件"主题词=Deep Learning for Visual Perception"
437 条 记 录,以下是251-260 订阅
排序:
Maximizing Self-Supervision From Thermal Image for Effective Self-Supervised learning of Depth and Ego-Motion
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 7771-7778页
作者: Shin, Ukcheol Lee, Kyunghyun Lee, Byeong-Uk Kweon, In So Korea Adv Inst Sci & Technol Sch Elect Engn Daejeon 34141 South Korea
Recently, self-supervised learning of depth and ego-motion from thermal images shows strong robustness and reliability under challenging scenarios. However, the inherent thermal image properties such as weak contrast,... 详细信息
来源: 评论
SGM3D: Stereo Guided Monocular 3D Object Detection
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 10478-10485页
作者: Zhou, Zheyuan Du, Liang Ye, Xiaoqing Zou, Zhikang Tan, Xiao Zhang, Li Xue, Xiangyang Feng, Jianfeng Fudan Univ Sch Comp Sci Shanghai 200437 Peoples R China Fudan Univ Inst Sci & Technol Brain Inspired Intelligence Shanghai 200437 Peoples R China Baidu Inc Dept Comp Vis Technol VIS Beijing 100085 Peoples R China Fudan Univ Sch Data Sci Shanghai 200437 Peoples R China
Monocular 3D object detection aims to predict the object location, dimension and orientation in 3D space alongside the object category given only a monocular image. It poses a great challenge due to its ill-posed prop... 详细信息
来源: 评论
ABCD: Attentive Bilateral Convolutional Network for Robust Depth Completion
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第1期7卷 81-87页
作者: Jeon, Yurim Kim, Hwichang Seo, Seung-Woo Seoul Natl Univ SNU Dept Elect & Comp Engn Seoul 08826 South Korea Inst New Media & Commun INMC Seoul 08826 South Korea
We propose a point-cloud-centric depth completion method called attention bilateral convolutional network for depth completion (ABCD). The proposed method uses LiDAR data and camera data to improve the resolution of t... 详细信息
来源: 评论
Object-Aware Monocular Depth Prediction With Instance Convolutions
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 5389-5396页
作者: Simsar, Enis Ornek, Evin Pnar Manhardt, Fabian Dhamo, Helisa Navab, Nassir Tombari, Federico Tech Univ Munich D-80333 Munich Germany Google Inc D-85748 Garching Germany
With the advent of deep learning, estimating depth from a single RGB image has recently received a lot of attention, being capable of empowering many different applications ranging from path planning for robotics to c... 详细信息
来源: 评论
Few-Shot Instance Grasping of Novel Objects in Clutter
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 6566-6573页
作者: Guo, Weikun Li, Wei Hu, Ziye Gan, Zhongxue Fudan Univ Acad Engn & Technol Shanghai 200437 Peoples R China Ji Hua Lab Dept Engn Res Ctr Intelligent Robot Foshan 528200 Guangdong Peoples R China
Instance grasping, which aims to grasp a specific object out of clutter, is a fundamental task within robotics. However, allowing a robot to quickly learn to perform instance grasping for new, previously unseen object... 详细信息
来源: 评论
See Eye to Eye: A Lidar-Agnostic 3D Detection Framework for Unsupervised Multi-Target Domain Adaptation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 7904-7911页
作者: Tsai, Darren Berrio, Julie Stephany Shan, Mao Worrall, Stewart Nebot, Eduardo Univ Sydney Australian Ctr Field Robot ACFR Sydney NSW Australia
Sampling discrepancies between different manufacturers and models of lidar sensors result in inconsistent representations of objects. This leads to performance degradation when 3D detectors trained for one lidar are t... 详细信息
来源: 评论
Multi-Level Consistency learning for Source-Free Model Adaptation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 12419-12426页
作者: Luo, Xin Chen, Wei Li, Chen Zhou, Bin Tan, Yusong Natl Univ Def Technol Coll Comp Sci Changsha 410000 Peoples R China
Source-free model adaptation (SFMA) plays an important role in robust robot automation, which aims to mitigate distributional inconsistency between source and target data while avoiding accessing source data. SFMA met... 详细信息
来源: 评论
Temporal Point Cloud Completion With Pose Disturbance
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 4165-4172页
作者: Shi, Jieqi Xu, Lingyun Li, Peiliang Chen, Xiaozhi Shen, Shaojie Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China Dji Co Shenzhen 518057 Peoples R China
Point clouds collected by real-world sensors are always unaligned and sparse, which makes it hard to reconstruct the complete shape of object from a single frame of data. In this work, we manage to provide complete po... 详细信息
来源: 评论
EchoVPR: Echo State Networks for visual Place Recognition
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 4520-4527页
作者: Ozdemir, Anil Scerri, Mark Barron, Andrew B. Philippides, Andrew Mangan, Michael Vasilaki, Eleni Manneschi, Luca Univ Sheffield Dept Comp Sci Sheffield S1 4DP S Yorkshire England Macquarie Univ Dept Biol Sci Sydney NSW 2109 Australia Univ Sussex Sch Engn & Informat Brighton BN19QJ E Sussex England Univ Sheffield Dept Comp Sci Sheffield S1 4DP S Yorkshire England Univ Zurich Inst Neuroinformat CH-8057 Zurich Switzerland Swiss Fed Inst Technol CH-8057 Zurich Switzerland
Recognising previously visited locations is an important, but unsolved, task in autonomous navigation. Current visual place recognition (VPR) benchmarks typically challenge models to recover the position of a query im... 详细信息
来源: 评论
Uncertainty-Aware Self-Improving Framework for Depth Estimation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第1期7卷 41-48页
作者: Nie, Xinyu Shi, Dianxi Li, Ruihao Liu, Zhe Chen, Xucan Artificial Intelligence Res Ctr Def Innovat Inst Beijing 100166 Peoples R China Tianjin Artificial Intelligence Innovat Ctr Tianjin 300457 Peoples R China Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China
In recent years, self-supervised paradigms for depth estimation have drawn lots of attention from the community. Promising as they are, in order to achieve wider application and better performance, reasoning about the... 详细信息
来源: 评论