咨询与建议

限定检索结果

文献类型

  • 426 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 437 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 436 篇 工学
    • 423 篇 电气工程
    • 421 篇 控制科学与工程
    • 12 篇 计算机科学与技术...
    • 6 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 437 篇 deep learning fo...
  • 77 篇 feature extracti...
  • 67 篇 three-dimensiona...
  • 59 篇 object detection
  • 55 篇 training
  • 51 篇 visual learning
  • 46 篇 task analysis
  • 42 篇 localization
  • 42 篇 computer vision ...
  • 41 篇 cameras
  • 40 篇 semantic scene u...
  • 40 篇 deep learning me...
  • 40 篇 rgb-d perception
  • 39 篇 segmentation and...
  • 39 篇 robots
  • 38 篇 semantics
  • 38 篇 computer vision ...
  • 36 篇 visualization
  • 31 篇 point cloud comp...
  • 30 篇 recognition

机构

  • 6 篇 google ch-8002 z...
  • 5 篇 univ bonn d-5311...
  • 5 篇 korea adv inst s...
  • 5 篇 zhejiang univ co...
  • 5 篇 tech univ munich...
  • 4 篇 univ tubingen d-...
  • 4 篇 keio univ yokoha...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ chinese aca...
  • 4 篇 nyu brooklyn ny ...
  • 3 篇 univ michigan an...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 natl univ def te...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 southeast univ s...
  • 3 篇 toyota res inst ...
  • 3 篇 univ perugia dep...
  • 3 篇 alibaba grp peop...

作者

  • 8 篇 tombari federico
  • 8 篇 giusti alessandr...
  • 8 篇 stachniss cyrill
  • 7 篇 behley jens
  • 7 篇 sugiura komei
  • 6 篇 caputo barbara
  • 5 篇 guzzi jerome
  • 5 篇 seo seung-woo
  • 5 篇 weyler jan
  • 5 篇 navab nassir
  • 5 篇 hutter marco
  • 5 篇 wu jun
  • 5 篇 xiang zhiyu
  • 5 篇 valada abhinav
  • 4 篇 shin ukcheol
  • 4 篇 van gool luc
  • 4 篇 gambardella luca...
  • 4 篇 nava mirko
  • 4 篇 garg sourav
  • 4 篇 wang yue

语言

  • 437 篇 英文
检索条件"主题词=Deep Learning for Visual Perception"
437 条 记 录,以下是281-290 订阅
排序:
TransDSSL: Transformer Based Depth Estimation via Self-Supervised learning
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 10969-10976页
作者: Han, Daechan Shin, Jeongmin Kim, Namil Hwang, Soonmin Choi, Yukyung Sejong Univ Sch Intelligent Mechatron Engn Seoul 05006 South Korea Naver Labs Gyeonggi Do 13561 South Korea Carnegie Mellon Univ Pittsburgh PA 15213 USA
Recently, transformers have been widely adopted for various computer vision tasks and show promising results due to their ability to encode long-range spatial dependencies in an image effectively. However, very few st... 详细信息
来源: 评论
Tracker Meets Night: A Transformer Enhancer for UAV Tracking
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 3866-3873页
作者: Ye, Junjie Fu, Changhong Cao, Ziang An, Shan Zheng, Guangze Li, Bowen Tongji Univ Sch Mech Engn Shanghai 201804 Peoples R China Tongji Univ Sch Automot Studies Shanghai 201804 Peoples R China JD COM Inc Tech & Data Ctr Beijing 100108 Peoples R China
Most previous progress in object tracking is realized in daytime scenes with favorable illumination. State-of-the-arts can hardly carry on their superiority at night so far, thereby considerably blocking the broadenin... 详细信息
来源: 评论
Multi-Dimensional Cooperative Network for Stereo Matching
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第1期7卷 581-587页
作者: Chen, Wei Jia, Xiaogang Wu, Mingfei Liang, Zhengfa Natl Univ Def Technol Dept Comp Sci Changsha 410073 Peoples R China
The dimensions of cost volumes and corresponding aggregation networks play a critical role in balancing the speed and accuracy for stereo matching. Current most 2D stereo networks based on 3D cost volumes are speedy b... 详细信息
来源: 评论
learning Cross-Scale visual Representations for Real-Time Image Geo-Localization
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 5087-5094页
作者: Zhang, Tianyi Johnson-Roberson, Matthew Univ Michigan Inst Robot Ann Arbor MI 48109 USA Univ Michigan Dept Naval Architecture & Marine Engn Ann Arbor MI 48109 USA
Robot localization remains a challenging task in GPS denied environments. State estimation approaches based on local sensors, e.g. cameras or IMUs, are drifting-prone for long-range missions as error accumulates. In t... 详细信息
来源: 评论
LoopNet: Where to Focus? Detecting Loop Closures in Dynamic Scenes
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 2031-2038页
作者: Osman, Hussein Darwish, Nevin Bayoumi, AbdElMoniem Cairo Univ Dept Comp Engn Fac Engn Giza 12613 Egypt
Loop closure detection is essential in visual simultaneous localization and mapping systems to recognize previously visited scenes, reducing pose and map estimates uncertainty. However, loop closure detection is highl... 详细信息
来源: 评论
CertainNet: Sampling-Free Uncertainty Estimation for Object Detection
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 698-705页
作者: Gasperini, Stefano Haug, Jan Mahani, Mohammad-Ali Nikouei Marcos-Ramiro, Alvaro Navab, Nassir Busam, Benjamin Tombari, Federico Tech Univ Munchen TUM Fac Comp Sci D-857481 Garching Germany BMW Grp D-80788 Munich Germany Tech Univ Munchen TUM Fac Comp Sci D-85748 Garching Germany Johns Hopkins Univ Dept Comp Sci Baltimore MD 21218 USA Google CH-8002 Zurich Switzerland
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings. In perception for autonomous driving, measuring the uncertainty means providing additional calibrated information to... 详细信息
来源: 评论
DiffSRL: learning Dynamical State Representation for Deformable Object Manipulation With Differentiable Simulation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 9533-9540页
作者: Chen, Sirui Liu, Yunhao Yao, Shang Wen Li, Jialong Fan, Tingxiang Pan, Jia Univ Hong Kong Hong Kong Peoples R China Ctr Garment Prod Ltd Hong Kong Peoples R China
Dynamic state representation learning is essential for robot learning. Good latent space that can accurately describe dynamic transition and constraints can significantly accelerate reinforcement learning training as ... 详细信息
来源: 评论
Continual Adaptation of Semantic Segmentation Using Complementary 2D-3D Data Representations
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 11665-11672页
作者: Frey, Jonas Blum, Hermann Milano, Francesco Siegwart, Roland Cadena, Cesar Swiss Fed Inst Technol Robot Syst Lab CH-8003 Zurich Switzerland Swiss Fed Inst Technol Autonomous Syst Lab Zurich Switzerland
Semantic segmentation networks are usually pretrained once and not updated during deployment. As a consequence, misclassifications commonly occur if the distribution of the training data deviates from the one encounte... 详细信息
来源: 评论
Bayesian deep Neural Networks for Supervised learning of Single-View Depth
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 2565-2572页
作者: Rodriguez-Puigvert, Javier Martinez-Cantin, Ruben Civera, Javier Univ Zaragoza I3A Zaragoza 50018 Spain
Uncertainty quantification is essential for robotic perception, as overconfident or point estimators can lead to collisions and damages to the environment and the robot. In this letter, we evaluate scalable approaches... 详细信息
来源: 评论
Design and Control of a Highly Redundant Rigid-flexible Coupling Robot to Assist the COVID-19 Oropharyngeal-Swab Sampling
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 1856-1863页
作者: Hu, Yingbai Li, Jian Chen, Yongquan Wang, Qiwen Chi, Chuliang Zhang, Heng Gao, Qing Lan, Yuanmin Li, Zheng Mu, Zonggao Sun, Zhenglong Knoll, Alois Shenzhen Inst Artificial Intelligence & Robot Soc Shenzhen 518129 Peoples R China Tech Univ Munich Chair Robot Artificial Intelligence & Real Time S D-85748 Munich Germany Chinese Univ Hong Kong Inst Robot & Intelligent Mfg Shenzhen 518172 Peoples R China Chinese Univ Hong Kong Sch Sci & Engn Shenzhen 518172 Peoples R China Longgang Dist Peoples Hosp Shenzhen 518172 Peoples R China Chinese Univ Hong Kong Dept Surg Hong Kong Peoples R China Chinese Univ Hong Kong Chow Yuk Ho Technol Ctr Innovat Med Hong Kong Peoples R China Shandong Univ Technol Sch Mech Engn Zibo 255000 Peoples R China
The outbreak of novel coronavirus pneumonia (COVID-19) has caused mortality and morbidity worldwide. Oropharyngeal-swab (OP-swab) sampling is widely used for the diagnosis of COVID-19 in the world. To avoid the clinic... 详细信息
来源: 评论