咨询与建议

限定检索结果

文献类型

  • 426 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 437 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 436 篇 工学
    • 423 篇 电气工程
    • 421 篇 控制科学与工程
    • 12 篇 计算机科学与技术...
    • 6 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 437 篇 deep learning fo...
  • 77 篇 feature extracti...
  • 67 篇 three-dimensiona...
  • 59 篇 object detection
  • 55 篇 training
  • 51 篇 visual learning
  • 46 篇 task analysis
  • 42 篇 localization
  • 42 篇 computer vision ...
  • 41 篇 cameras
  • 40 篇 semantic scene u...
  • 40 篇 deep learning me...
  • 40 篇 rgb-d perception
  • 39 篇 segmentation and...
  • 39 篇 robots
  • 38 篇 semantics
  • 38 篇 computer vision ...
  • 36 篇 visualization
  • 31 篇 point cloud comp...
  • 30 篇 recognition

机构

  • 6 篇 google ch-8002 z...
  • 5 篇 univ bonn d-5311...
  • 5 篇 korea adv inst s...
  • 5 篇 zhejiang univ co...
  • 5 篇 tech univ munich...
  • 4 篇 univ tubingen d-...
  • 4 篇 keio univ yokoha...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ chinese aca...
  • 4 篇 nyu brooklyn ny ...
  • 3 篇 univ michigan an...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 natl univ def te...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 southeast univ s...
  • 3 篇 toyota res inst ...
  • 3 篇 univ perugia dep...
  • 3 篇 alibaba grp peop...

作者

  • 8 篇 tombari federico
  • 8 篇 giusti alessandr...
  • 8 篇 stachniss cyrill
  • 7 篇 behley jens
  • 7 篇 sugiura komei
  • 6 篇 caputo barbara
  • 5 篇 guzzi jerome
  • 5 篇 seo seung-woo
  • 5 篇 weyler jan
  • 5 篇 navab nassir
  • 5 篇 hutter marco
  • 5 篇 wu jun
  • 5 篇 xiang zhiyu
  • 5 篇 valada abhinav
  • 4 篇 shin ukcheol
  • 4 篇 van gool luc
  • 4 篇 gambardella luca...
  • 4 篇 nava mirko
  • 4 篇 garg sourav
  • 4 篇 wang yue

语言

  • 437 篇 英文
检索条件"主题词=Deep Learning for Visual Perception"
437 条 记 录,以下是291-300 订阅
排序:
Topological Semantic Mapping by Consolidation of deep visual Features
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 4110-4117页
作者: Sousa, Ygor C. N. Bassani, Hansenclever F. Univ Fed Pernambuco Ctr Informat BR-50740560 Recife PE Brazil
Many works in the recent literature introduce semantic mapping methods that use CNNs (Convolutional Neural Networks) to recognize semantic properties in images. The types of properties (eg.: room size, place category,... 详细信息
来源: 评论
Pose Estimation for Robot Manipulators via Keypoint Optimization and Sim-to-Real Transfer
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 4622-4629页
作者: Lu, Jingpei Richter, Florian Yip, Michael C. Univ Calif San Diego Dept Elect & Comp Engn La Jolla CA 92093 USA
Keypoint detection is an essential budding block !Or many robotic applications like motion capture and pace estimation. Historically, keypoints are detected using uniquely engineered markers such as checkerboards or f... 详细信息
来源: 评论
Semi-Supervised learning: Structure, Reflectance and Lighting Estimation From a Night Image Pair
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 976-983页
作者: Wang, Ke Shen, Shaojie Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China
While unsupervised approaches have been proposed to estimate reflectance and shading layers for images, the decomposition process is a challenging, under-determined inverse problem. Previous unsupervised approaches fo... 详细信息
来源: 评论
A Continuous Robot Vision Approach for Predicting Shapes and visually Perceived Weights of Garments
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 7950-7957页
作者: Duan, Li Aragon-Camarasa, Gerardo Univ Glasgow Sch Comp Sci Glasgow G12 8RZ Lanark Scotland
We present a continuous perception approach that learns geometric and physical similarities between garments by continuously observing a garment while a robot picks it up from a table. The aim is to capture and encode... 详细信息
来源: 评论
End-to-End Optimization of LiDAR Beam Configuration for 3D Object Detection and Localization
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 2242-2249页
作者: Voedisch, Niclas Unal, Ozan Li, Ke Van Gool, Luc Dai, Dengxin Swiss Fed Inst Technol Comp Vis Lab CH-8092 Zurich Switzerland Univ Freiburg Autonomous Intelligent Syst D-79110 Freiburg Germany Katholieke Univ Leuven Proc Speech & Images B-3001 Leuven Belgium MPI Informat Vis Autonomous Syst D-66123 Saarbrucken Germany
Existing learning methods for LiDAR-based applications use 3D points scanned under a pre-determined beam configuration, e.g., the elevation angles of beams are often evenly distributed. Those fixed configurations are ... 详细信息
来源: 评论
Randomized-to-Canonical Model Predictive Control for Real-World visual Robotic Manipulation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 8964-8971页
作者: Yamanokuchi, Tomoya Kwon, Yuhwan Tsurumine, Yoshihisa Uchibe, Eiji Morimoto, Jun Matsubara, Takamitsu Nara Inst Sci & Technol NAIST Grad Sch Informat Sci Nara 6300192 Japan Adv Telecommun Res Inst Int ATR Kyoto 6190288 Japan Kyoto Univ Dept Syst Sci Grad Sch Informat Kyoto 6068501 Japan
Many works have recently explored Sim-to-real transferable visual model predictive control (MPC). However, such works are limited to one-shot transfer, where real-world data must be collected once to perform the sim-t... 详细信息
来源: 评论
Navigation-Oriented Scene Understanding for Robotic Autonomy: learning to Segment Driveability in Egocentric Images
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 2913-2920页
作者: Humblot-Renaux, Galadrielle Marchegiani, Letizia Moeslund, Thomas B. Gade, Rikke Aalborg Univ Visual Anal & Percept Lab DK-9220 Aalborg Denmark Aalborg Univ Dept Elect Syst DK-9220 Aalborg Denmark
This work tackles scene understanding for outdoor robotic navigation, solely relying on images captured by an on-board camera. Conventional visual scene understanding interprets the environment based on specific descr... 详细信息
来源: 评论
REVE-CE: Remote Embodied visual Referring Expression in Continuous Environment
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 1494-1501页
作者: Li, Xinghang Guo, Di Liu, Huaping Sun, Fuchun Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Inst Artificial Intelligence Beijing 100084 Peoples R China Tsinghua Univ Dept Comp Sci & Technol Beijing 100084 Peoples R China
It has always been a great challenge for the robot to navigate in the visual world following natural language instructions. Recently, several tasks such as the Vision-and-Language Navigation (VLN) and Remote Embodied ... 详细信息
来源: 评论
SLFNet: A Stereo and LiDAR Fusion Network for Depth Completion
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 10605-10612页
作者: Zhang, Yongjian Wang, Longguang Li, Kunhong Fu, Zhiheng Guo, Yulan Sun Yat Sen Univ Sch Elect & Commun Engn Shenzhen Campus Shenzhen 518107 Peoples R China Natl Univ Def Technol Coll Elect Sci & Technol Changsha 410073 Peoples R China Univ Western Australia UWA Dept Comp Sci & Software Engn Perth WA 6009 Australia
Acquiring dense and precise depth information in real time is highly demanded for robotic perception and automatic driving. Motivated by the complementary nature of stereo images and LiDAR point clouds, we propose an ... 详细信息
来源: 评论
Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 1968-1975页
作者: Gosala, Nikhil Valada, Abhinav Univ Freiburg Dept Comp Sci Freiburg Germany
Bird's-Eye-View (BEV) maps have emerged as one of the most powerful representations for scene understanding due to their ability to provide rich spatial context while being easy to interpret and process. Such maps... 详细信息
来源: 评论