咨询与建议

限定检索结果

文献类型

  • 425 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 436 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 436 篇 工学
    • 423 篇 电气工程
    • 421 篇 控制科学与工程
    • 12 篇 计算机科学与技术...
    • 6 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 436 篇 deep learning fo...
  • 77 篇 feature extracti...
  • 67 篇 three-dimensiona...
  • 58 篇 object detection
  • 55 篇 training
  • 51 篇 visual learning
  • 46 篇 task analysis
  • 42 篇 localization
  • 42 篇 computer vision ...
  • 41 篇 cameras
  • 40 篇 semantic scene u...
  • 40 篇 deep learning me...
  • 40 篇 rgb-d perception
  • 39 篇 robots
  • 38 篇 segmentation and...
  • 38 篇 semantics
  • 38 篇 computer vision ...
  • 36 篇 visualization
  • 31 篇 point cloud comp...
  • 30 篇 recognition

机构

  • 6 篇 google ch-8002 z...
  • 5 篇 univ bonn d-5311...
  • 5 篇 korea adv inst s...
  • 5 篇 zhejiang univ co...
  • 5 篇 tech univ munich...
  • 4 篇 univ tubingen d-...
  • 4 篇 keio univ yokoha...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ chinese aca...
  • 4 篇 nyu brooklyn ny ...
  • 3 篇 univ michigan an...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 natl univ def te...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 southeast univ s...
  • 3 篇 toyota res inst ...
  • 3 篇 univ perugia dep...
  • 3 篇 alibaba grp peop...

作者

  • 8 篇 tombari federico
  • 8 篇 giusti alessandr...
  • 8 篇 stachniss cyrill
  • 7 篇 behley jens
  • 7 篇 sugiura komei
  • 6 篇 caputo barbara
  • 5 篇 guzzi jerome
  • 5 篇 seo seung-woo
  • 5 篇 weyler jan
  • 5 篇 navab nassir
  • 5 篇 hutter marco
  • 5 篇 wu jun
  • 5 篇 xiang zhiyu
  • 5 篇 valada abhinav
  • 4 篇 shin ukcheol
  • 4 篇 van gool luc
  • 4 篇 gambardella luca...
  • 4 篇 nava mirko
  • 4 篇 garg sourav
  • 4 篇 wang yue

语言

  • 436 篇 英文
检索条件"主题词=Deep Learning for Visual Perception"
436 条 记 录,以下是321-330 订阅
排序:
deep Weakly Supervised Positioning for Indoor Mobile Robots
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 1206-1213页
作者: Wang, Ruoyu Xu, Xuchu Ding, Li Huang, Yang Feng, Chen NYU Brooklyn NY 11201 USA Univ Rochester Rochester NY 14627 USA Univ Calif Berkeley Berkeley CA 94720 USA
PoseNet can map a photo to the position where it is taken, which is appealing in robotics. However training PoseNet requires full supervision, where ground truth positions are non-trivial to obtain. Can we train PoseN... 详细信息
来源: 评论
MultiRes-NetVLAD: Augmenting Place Recognition Training With Low-Resolution Imagery
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 3882-3889页
作者: Khaliq, Ahmad Milford, Michael Garg, Sourav Queensland Univ Technol Sch Elect Engn & Robot Brisbane Qld 4000 Australia Queensland Univ Technol QUT Ctr Robot Brisbane Qld 4000 Australia
visual Place Recognition (VPR) is a crucial component of 6-DoF localization, visual SLAM and structure-from-motion pipelines, tasked to generate an initial list of place match hypotheses by matching global place descr... 详细信息
来源: 评论
Particle Filters in Latent Space for Robust Deformable Linear Object Tracking
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 12577-12584页
作者: Yang, Yuxuan Stork, Johannes A. A. Stoyanov, Todor Orebro Univ Ctr Appl Autonomous Sensor Syst AASS Autonomous Mobile Manipulat Lab Orebro 70182 Sweden
Tracking of deformable linear objects (DLOs) is important for many robotic applications. However, achieving robust and accurate tracking is challenging due to the lack of distinctive features or appearance on the DLO,... 详细信息
来源: 评论
3D Part Assembly Generation With Instance Encoded Transformer
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 9051-9058页
作者: Zhang, Rufeng Kong, Tao Wang, Weihao Han, Xuan You, Mingyu Tongji Univ Coll Elect & Informat Engn Frontiers Sci Ctr Intelligent Autonomous Syst Shanghai 201800 Peoples R China ByteDance AI Lab Beijing 100089 Peoples R China
It is desirable to enable robots capable of automatic assembly. Structural understanding of object parts plays a crucial role in this task yet remains relatively unexplored. In this letter, we focus on the setting of ... 详细信息
来源: 评论
Contrastive 3D Shape Completion and Reconstruction for Agricultural Robots Using RGB-D Frames
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 10120-10127页
作者: Magistri, Federico Marks, Elias Nagulavancha, Sumanth Vizzo, Ignacio Laeebe, Thomas Behley, Jens Halstead, Michael McCool, Chris Stachniss, Cyrill Univ Bonn D-53111 Bonn Germany Univ Oxford Dept Engn Sci Oxford OX1 2JD England Lamas Inst Machine Learning & Artificial Intellig D-53757 St Augustin Germany
Monitoring plants and fruits is important in modern agriculture, with applications ranging from high-throughput phenotyping to autonomous harvesting. Obtaining highly accurate 3D measurements under real agricultural c... 详细信息
来源: 评论
A Sim-to-Real Object Recognition and Localization Framework for Industrial Robotic Bin Picking
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 3961-3968页
作者: Li, Xianzhi Cao, Rui Feng, Yidan Chen, Kai Yang, Biqi Fu, Chi-Wing Li, Yichuan Dou, Qi Liu, Yun-Hui Heng, Pheng-Ann Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China Chinese Univ Hong Kong Dept Mech & Automat Engn Hong Kong Peoples R China
We present a generic and robust sim-to-real deep-learning-based framework, namely S2R-Pick, for fast and accurate object recognition and localization in industrial robotic bin picking. Unlike existing works designed f... 详细信息
来源: 评论
Neural Scene Representation for Locomotion on Structured Terrain
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 8667-8674页
作者: Hoeller, David Rudin, Nikita Choy, Christopher Anandkumar, Animashree Hutter, Marco Swiss Fed Inst Technol Robot Syst Lab CH-8050 Zurich Switzerland NVIDIA Santa Clara CA 94305 USA CALTECH Pasadena CA 91125 USA
We propose a learning-based method to reconstruct the local terrain for locomotion with a mobile robot traversing urban environments. Using a stream of depth measurements from the onboard cameras and the robot's t... 详细信息
来源: 评论
Homography-Based Loss Function for Camera Pose Regression
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 6242-6249页
作者: Boittiaux, Clementin Marxer, Ricard Dune, Claire Arnaubec, Aurelien Hugel, Vincent IFREMER F-83000 La Seyne Sur Mer France Aix Marseille Univ Univ Toulon CNRS LIS F-83000 Toulon France Univ Toulon & Var COSMER F-83000 Toulon France
Some recent visual-based relocalization algorithms rely on deep learning methods to perform camera pose regression from image data. This letter focuses on the loss functions that embed the error between two poses to p... 详细信息
来源: 评论
Self-Supervised Scene Flow Estimation With 4-D Automotive Radar
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 8233-8240页
作者: Ding, Fangqiang Pan, Zhijun Deng, Yimin Deng, Jianning Lu, Chris Xiaoxuan Univ Edinburgh Sch Informat Edinburgh EH8 9AF Midlothian Scotland SAIC Motor Tech Ctr Shanghai 200041 Peoples R China
Scene flow allows autonomous vehicles to reason about the arbitrary motion of multiple independent objects which is the key to long-term mobile autonomy. While estimating the scene flow from LiDAR has progressed recen... 详细信息
来源: 评论
Recommending Fine-Grained Tool Consistent With Common Sense Knowledge for Robot
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 8574-8581页
作者: Xin, Jianjia Wang, Lichun Wang, Shaofan Liu, Yukun Yang, Chao Yin, Baocai Beijing Univ Technol Fac Informat Technol Beijing Artificial Intelligence Inst Beijing Key Lab Multimedia & Intelligent Software Beijing 100124 Peoples R China
When robots carry out task, selecting an appropriate tool is necessary. The current research ignores the fine-grained characteristic of tasks, and mainly focuses on whether the task can be completed. Little considerat... 详细信息
来源: 评论