咨询与建议

限定检索结果

文献类型

  • 425 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 436 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 436 篇 工学
    • 423 篇 电气工程
    • 421 篇 控制科学与工程
    • 12 篇 计算机科学与技术...
    • 6 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 436 篇 deep learning fo...
  • 77 篇 feature extracti...
  • 67 篇 three-dimensiona...
  • 58 篇 object detection
  • 55 篇 training
  • 51 篇 visual learning
  • 46 篇 task analysis
  • 42 篇 localization
  • 42 篇 computer vision ...
  • 41 篇 cameras
  • 40 篇 semantic scene u...
  • 40 篇 deep learning me...
  • 40 篇 rgb-d perception
  • 39 篇 robots
  • 38 篇 segmentation and...
  • 38 篇 semantics
  • 38 篇 computer vision ...
  • 36 篇 visualization
  • 31 篇 point cloud comp...
  • 30 篇 recognition

机构

  • 6 篇 google ch-8002 z...
  • 5 篇 univ bonn d-5311...
  • 5 篇 korea adv inst s...
  • 5 篇 zhejiang univ co...
  • 5 篇 tech univ munich...
  • 4 篇 univ tubingen d-...
  • 4 篇 keio univ yokoha...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ chinese aca...
  • 4 篇 nyu brooklyn ny ...
  • 3 篇 univ michigan an...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 natl univ def te...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 southeast univ s...
  • 3 篇 toyota res inst ...
  • 3 篇 univ perugia dep...
  • 3 篇 alibaba grp peop...

作者

  • 8 篇 tombari federico
  • 8 篇 giusti alessandr...
  • 8 篇 stachniss cyrill
  • 7 篇 behley jens
  • 7 篇 sugiura komei
  • 6 篇 caputo barbara
  • 5 篇 guzzi jerome
  • 5 篇 seo seung-woo
  • 5 篇 weyler jan
  • 5 篇 navab nassir
  • 5 篇 hutter marco
  • 5 篇 wu jun
  • 5 篇 xiang zhiyu
  • 5 篇 valada abhinav
  • 4 篇 shin ukcheol
  • 4 篇 van gool luc
  • 4 篇 gambardella luca...
  • 4 篇 nava mirko
  • 4 篇 garg sourav
  • 4 篇 wang yue

语言

  • 436 篇 英文
检索条件"主题词=Deep Learning for Visual Perception"
436 条 记 录,以下是391-400 订阅
排序:
Target-Style-Aware Unsupervised Domain Adaptation for Object Detection
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 3825-3832页
作者: Yun, Woo-han Han, ByungOk Lee, Jaeyeon Kim, Jaehong Kim, Junmo Korea Adv Inst Sci & Technol Robot Program Daejeon 34129 South Korea ETRI Intelligent Robot Res Div Daejeon 34129 South Korea Korea Adv Inst Sci & Technol Sch Elect Engn Daejeon 34141 South Korea
Vision modules running on mobility platforms, such as robots and cars, often face challenging situations such as a domain shift where the distributions of training (source) data and test (target) data are different. T... 详细信息
来源: 评论
LaneAF: Robust Multi-Lane Detection With Affinity Fields
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 7477-7484页
作者: Abualsaud, Hala Liu, Sean Lu, David B. Situ, Kenny Rangesh, Akshay Trivedi, Mohan M. Univ Calif San Diego Lab Intelligent & Safe Automobiles San Diego CA 92092 USA
This study presents an approach to lane detection involving the prediction of binary segmentation masks and per-pixel affinity fields. These affinity fields, along with the binary masks, can then be used to cluster la... 详细信息
来源: 评论
Panoster: End-to-End Panoptic Segmentation of LiDAR Point Clouds
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 3216-3223页
作者: Gasperini, Stefano Mahani, Mohammad-Ali Nikouei Marcos-Ramiro, Alvaro Navab, Nassir Tombari, Federico Tech Univ Munich Fac Comp Sci D-85748 Garching Germany BMW Grp D-80788 Munich Germany Johns Hopkins Univ Dept Comp Sci Baltimore MD 21218 USA Google CH-8002 Zurich Switzerland
Panoptic segmentation has recently unified semantic and instance segmentation, previously addressed separately, thus taking a step further towards creating more comprehensive and efficient perception systems. In this ... 详细信息
来源: 评论
learning Occupancy Priors of Human Motion From Semantic Maps of Urban Environments
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 3248-3255页
作者: Rudenko, Andrey Palmieri, Luigi Doellinger, Johannes Lilienthal, Achim J. Arras, Kai O. Bosch Corp Res D-71272 Renningen Germany Orebro Univ Mobile Robot & Olfact Lab S-70182 Orebro Sweden Bosch Ctr Artificial Intelligence D-71272 Renningen Germany
Understanding and anticipating human activity is an important capability for intelligent systems in mobile robotics, autonomous driving, and video surveillance. While learning from demonstrations with on-site collecte... 详细信息
来源: 评论
REDE: End-to-End Object 6D Pose Robust Estimation Using Differentiable Outliers Elimination
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 2886-2893页
作者: Hua, Weitong Zhou, Zhongxiang Wu, Jun Huang, Huang Wang, Yue Xiong, Rong Zhejiang Univ State Key Lab Ind Control Technol Hangzhou 310027 Zhejiang Peoples R China Zhejiang Univ Inst Cyber Syst & Control Hangzhou 310027 Zhejiang Peoples R China Beijing Inst Technol Beijing 100081 Peoples R China
Object 6D pose estimation is a fundamental task in many applications. Conventional methods solve the task by detecting and matching the keypoints, then estimating the pose. Recent efforts bringing deep learning into t... 详细信息
来源: 评论
Identifying Reflected Images From Object Detector in Indoor Environment Utilizing Depth Information
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 635-642页
作者: Park, Daehee Park, Yong-Hwa Korea Adv Inst Sci & Technol Dept Mech Engn Daejeon 34141 South Korea
We observed that mirror reflection severely degrades person detection performance in an indoor environment, which is an essential task for service robots. To address this problem, we propose a new real-time method to ... 详细信息
来源: 评论
Geometry Guided Network for Point Cloud Registration
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 7270-7277页
作者: Min, Taewon Kim, Eunseok Shim, Inwook Agcy Def Dev Add Ground Technol Res Inst GTRI Daejeon South Korea
Point cloud registration is a well-known way to align two different point clouds via a rigid transform estimation in robotics and computer vision applications. In particular, deep learning-based methods have recently ... 详细信息
来源: 评论
Sparse-PointNet: See Further in Autonomous Vehicles
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 7049-7056页
作者: Wang, LeiChen Goldluecke, Bastian Daimler AG Dept Res & Dev Radar Sensor D-51147 Sindelfingen Germany Univ Konstanz Dept Comp Sci D-78464 Constance Germany
Since the density of LiDAR points reduces significantly with increasing distance, popular 3D detectors tend to learn spatial features from dense points and ignore very sparse points in the far range. As a result, thei... 详细信息
来源: 评论
LaserFlow: Efficient and Probabilistic Object Detection and Motion Forecasting
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 526-533页
作者: Meyer, Gregory P. Charland, Jake Pandey, Shreyash Laddha, Ankit Gautam, Shivam Vallespi-Gonzalez, Carlos Wellington, Carl K. Uber Adv Technol Grp Pittsburgh PA 15206 USA
In this work, we present LaserFlow, an efficient method for 3D object detection and motion forecasting from LiDAR. Unlike the previous work, our approach utilizes the native range view representation of the LiDAR, whi... 详细信息
来源: 评论
Multi-View Object Pose Refinement With Differentiable Renderer
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 2579-2586页
作者: Shugurov, Ivan Pavlov, Ivan Zakharov, Sergey Ilic, Slobodan Tech Univ Munich Dept Informat D-85748 Garching Germany Siemens AG D-81739 Munich Germany Toyota Res Inst Los Altos CA USA
This letter introduces a novel multi-view 6 DoF object pose refinement approach focusing on improving methods trained on synthetic data. It is based on the DPOD detector, which produces dense 2D-3D correspondences bet... 详细信息
来源: 评论