咨询与建议

限定检索结果

文献类型

  • 425 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 436 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 436 篇 工学
    • 423 篇 电气工程
    • 421 篇 控制科学与工程
    • 12 篇 计算机科学与技术...
    • 6 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 436 篇 deep learning fo...
  • 77 篇 feature extracti...
  • 67 篇 three-dimensiona...
  • 58 篇 object detection
  • 55 篇 training
  • 51 篇 visual learning
  • 46 篇 task analysis
  • 42 篇 localization
  • 42 篇 computer vision ...
  • 41 篇 cameras
  • 40 篇 semantic scene u...
  • 40 篇 deep learning me...
  • 40 篇 rgb-d perception
  • 39 篇 robots
  • 38 篇 segmentation and...
  • 38 篇 semantics
  • 38 篇 computer vision ...
  • 36 篇 visualization
  • 31 篇 point cloud comp...
  • 30 篇 recognition

机构

  • 6 篇 google ch-8002 z...
  • 5 篇 univ bonn d-5311...
  • 5 篇 korea adv inst s...
  • 5 篇 zhejiang univ co...
  • 5 篇 tech univ munich...
  • 4 篇 univ tubingen d-...
  • 4 篇 keio univ yokoha...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ chinese aca...
  • 4 篇 nyu brooklyn ny ...
  • 3 篇 univ michigan an...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 natl univ def te...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 southeast univ s...
  • 3 篇 toyota res inst ...
  • 3 篇 univ perugia dep...
  • 3 篇 alibaba grp peop...

作者

  • 8 篇 tombari federico
  • 8 篇 giusti alessandr...
  • 8 篇 stachniss cyrill
  • 7 篇 behley jens
  • 7 篇 sugiura komei
  • 6 篇 caputo barbara
  • 5 篇 guzzi jerome
  • 5 篇 seo seung-woo
  • 5 篇 weyler jan
  • 5 篇 navab nassir
  • 5 篇 hutter marco
  • 5 篇 wu jun
  • 5 篇 xiang zhiyu
  • 5 篇 valada abhinav
  • 4 篇 shin ukcheol
  • 4 篇 van gool luc
  • 4 篇 gambardella luca...
  • 4 篇 nava mirko
  • 4 篇 garg sourav
  • 4 篇 wang yue

语言

  • 436 篇 英文
检索条件"主题词=Deep Learning for Visual Perception"
436 条 记 录,以下是71-80 订阅
排序:
InstantPose: Zero-Shot Instance-Level 6D Pose Estimation From a Single View
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第6期10卷 6023-6030页
作者: Di Felice, Francesco Remus, Alberto Gasperini, Stefano Busam, Benjamin Ott, Lionel Thalhammer, Stefan Tombari, Federico Avizzano, Carlo Alberto Scuola Super Sant Anna Mech Intelligence Inst Dept Excellence Robot & AI I-56124 Pisa Italy Leonardo SpA Robot Lab Innovat Hub &I ntellectual Property I-16149 Genoa Italy Tech Univ Munich TUM Sch Computat Informat & Technol D-80809 Munich Germany Swiss Fed Inst Technol Dept Mech & Proc Engn Autonomous Syst Lab CH-8092 Zurich Switzerland UAS Tech Vienna Ind Engn Dept A-1040 Vienna Austria Google Zurich CH-8092 Zurich Switzerland
Object pose estimation using visual data is crucial for robotic interaction with the environment. Many existing instance-level methods are restricted by their requirements for 3D CAD models or multiple object views, w... 详细信息
来源: 评论
MonoTher-Depth: Enhancing Thermal Depth Estimation via Confidence-Aware Distillation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第3期10卷 2830-2837页
作者: Zuo, Xingxing Ranganathan, Nikhil Lee, Connor Gkioxari, Georgia Chung, Soon-Jo CALTECH Pasadena CA 91125 USA
Monocular depth estimation (MDE) from thermal images is a crucial technology for robotic systems operating in challenging conditions such as fog, smoke, and low light. The limited availability of labeled thermal data ... 详细信息
来源: 评论
Exploiting Motion Prior for Accurate Pose Estimation of Dashboard Cameras
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第1期10卷 764-771页
作者: Lu, Yipeng Zhao, Yifan Wang, Haiping Ruan, Zhiwei Liu, Yuan Dong, Zhen Yang, Bisheng Wuhan Univ State Key Lab Informat Engn Surveying Mapping & Re Wuhan 430072 Peoples R China China Univ Geosci Wuhan 430079 Peoples R China Didi Chuxing Technol Co Beijing 100193 Peoples R China Hong Kong Univ Sci & Technol Hong Kong Peoples R China Nanyang Technol Univ Singapore 639798 Singapore
Dashboard cameras (dashcams) record millions of driving videos daily, offering a valuable potential data source for various applications, including driving map production and updates. A necessary step for utilizing th... 详细信息
来源: 评论
Bayesian NeRF: Quantifying Uncertainty With Volume Density for Neural Implicit Fields
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第3期10卷 2144-2151页
作者: Lee, Sibaek Kang, Kyeongsu Ha, Seongbo Yu, Hyeonwoo Sungkyunkwan Univ Dept Intelligent Robot Suwon 12345 South Korea
We present a Bayesian Neural Radiance Field (NeRF), which explicitly quantifies uncertainty in the volume density by modeling uncertainty in the occupancy, without the need for additional networks, making it particula... 详细信息
来源: 评论
Pair-VPR: Place-Aware Pre-Training and Contrastive Pair Classification for visual Place Recognition With Vision Transformers
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第4期10卷 4013-4020页
作者: Hausler, Stephen Moghadam, Peyman CSIRO CSIRO Robot Data61 Brisbane Qld 4069 Australia Queensland Univ Technol QUT Sch Elect Engn & Robot Brisbane 4069 Australia
In this work we propose a novel joint training method for visual Place Recognition (VPR), which simultaneously learns a global descriptor and a pair classifier for re-ranking. The pair classifier can predict whether a... 详细信息
来源: 评论
Taxonomy-Aware Continual Semantic Segmentation in Hyperbolic Spaces for Open-World perception
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第2期10卷 1904-1911页
作者: Hindel, Julia Cattaneo, Daniele Valada, Abhinav Univ Freiburg Dept Comp Sci D-79110 Freiburg Germany
Semantic segmentation models are typically trained on a fixed set of classes, limiting their applicability in open-world scenarios. Class-incremental semantic segmentation aims to update models with emerging new class... 详细信息
来源: 评论
LatentBKI: Open-Dictionary Continuous Mapping in visual-Language Latent Spaces With Quantifiable Uncertainty
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第4期10卷 3102-3109页
作者: Wilson, Joey Xu, Ruihan Sun, Yile Ewen, Parker Zhu, Minghan Barton, Kira Ghaffari, Maani Univ Michigan Ann Arbor MI 48109 USA
This letter introduces a novel probabilistic mapping algorithm, LatentBKI, which enables open-vocabulary mapping with quantifiable uncertainty. Traditionally, semantic mapping algorithms focus on a fixed set of semant... 详细信息
来源: 评论
ConditionNET: learning Preconditions and Effects for Execution Monitoring
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第2期10卷 1337-1344页
作者: Sliwowski, Daniel Lee, Dongheui Tech Univ Wien TU Wien Autonomous Syst Lab A-1040 Vienna Austria Inst Robot & Mechatron DLR German Aerosp Ctr D-82234 Wessling Germany
The introduction of robots into everyday scenarios necessitates algorithms capable of monitoring the execution of tasks. In this letter, we propose ConditionNET, an approach for learning the preconditions and effects ... 详细信息
来源: 评论
Flow4D: Leveraging 4D Voxel Network for LiDAR Scene Flow Estimation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第4期10卷 3462-3469页
作者: Kim, Jaeyeul Woo, Jungwan Shin, Ukcheol Oh, Jean Im, Sunghoon DGIST Dept Elect Engn & Comp Sci Daegu 42988 South Korea Carnegie Mellon Univ Robot Inst Pittsburgh PA 15217 USA
Understanding the motion states of the surrounding environment is critical for safe autonomous driving. These motion states can be accurately derived from scene flow, which captures the three-dimensional motion field ... 详细信息
来源: 评论
CAFuser: Condition-Aware Multimodal Fusion for Robust Semantic perception of Driving Scenes
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第4期10卷 3134-3141页
作者: Brodermann, Tim Sakaridis, Christos Fu, Yuqian Van Gool, Luc Swiss Fed Inst Technol Comp Vis Lab CH-8057 Zurich Switzerland Sofia Univ St Kliment Ohridski INSAIT Sofia 1504 Bulgaria
Leveraging multiple sensors is crucial for robust semantic perception in autonomous driving, as each sensor type has complementary strengths and weaknesses. However, existing sensor fusion methods often treat sensors ... 详细信息
来源: 评论