咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=Deep Learning in Robotics and Automation"
221 条 记 录,以下是121-130 订阅
排序:
What the Constant Velocity Model Can Teach Us About Pedestrian Motion Prediction
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1696-1703页
作者: Schoeller, Christoph Aravantinos, Vincent Lay, Florian Knoll, Alois Fortiss Res Inst Free State Bavaria D-80805 Munich Germany Tech Univ Munich D-80333 Munich Germany
Pedestrian motion prediction is a fundamental task for autonomous robots and vehicles to operate safely. In recent years many complex approaches based on neural networks have been proposed to address this problem. In ... 详细信息
来源: 评论
Visual Object Search by learning Spatial Context
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1279-1286页
作者: Druon, Raphael Yoshiyasu, Yusuke Kanezaki, Asako Watt, Alassane Paul Sabatier Univ F-31330 Toulouse France CNRS AIST Joint Robot Lab Tsukuba Ibaraki 3058560 Japan Natl Inst Adv Ind Sci & Technol Tokyo 1350064 Japan Cent Supelec Rennes France
We present a visual navigation approach that uses context information to navigate an agent to find and reach a target object. To learn context from the objects present in the scene, we transform visual information int... 详细信息
来源: 评论
deepFactors: Real-Time Probabilistic Dense Monocular SLAM
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 721-728页
作者: Czarnowski, Jan Laidlow, Tristan Clark, Ronald Davison, Andrew J. Imperial Coll London Dyson Robot Lab London SW7 2AZ England
The ability to estimate rich geometry and camera motion from monocular imagery is fundamental to future interactive robotics and augmented reality applications. Different approaches have been proposed that vary in sce... 详细信息
来源: 评论
learning Matchable Image Transformations for Long-Term Metric Visual Localization
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1492-1499页
作者: Clement, Lee Gridseth, Mona Tomasi, Justin Kelly, Jonathan Univ Toronto Inst Aerosp Studies UTIAS Space & Terr Autonomous Robot Syst STARS Lab Toronto ON M3H 5T6 Canada UTIAS ASRL N York ON M3H 5T6 Canada
Long-term metric self-localization is an essential capability of autonomous mobile robots, but remains challenging for vision-based systems due to appearance changes caused by lighting, weather, or seasonal variations... 详细信息
来源: 评论
Robotic Understanding of Spatial Relationships Using Neural-Logic learning
Robotic Understanding of Spatial Relationships Using Neural-...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Yan, Fujian Wang, Dali He, Hongsheng Wichita State Univ Dept Elect Engn & Comp Sci Wichita KS 67260 USA Oak Ridge Natl Lab ORNL Artificial Intelligence AI Team Oak Ridge TN USA
Understanding spatial relations of objects is critical in many robotic applications such as grasping, manipulation, and obstacle avoidance. Humans can simply reason object's spatial relations from a glimpse of a s... 详细信息
来源: 评论
learning to Generate 6-DoF Grasp Poses with Reachability Awareness
Learning to Generate 6-DoF Grasp Poses with Reachability Awa...
收藏 引用
IEEE International Conference on robotics and automation (ICRA)
作者: Lou, Xibai Yang, Yang Choi, Changhyun Univ Minnesota Dept Elect & Comp Engn Minneapolis MN 55455 USA Univ Minnesota Dept Comp Sci & Engn Minneapolis MN USA
Motivated by the stringent requirements of unstructured real-world where a plethora of unknown objects reside in arbitrary locations of the surface, we propose a voxel-based deep 3D Convolutional Neural Network (3D CN... 详细信息
来源: 评论
Robot Motion Planning in Learned Latent Spaces
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第3期4卷 2407-2414页
作者: Ichter, Brian Pavone, Marco Google Brain Mountain View CA 94043 USA Stanford Univ Dept Aeronaut & Astronaut Stanford CA 94305 USA
This letter presents latent sampling-based motion planning (L-SBMP), a methodology toward computing motion plans for complex robotic systems by learning a plannable latent representation. Recent works in control of ro... 详细信息
来源: 评论
Semi-Supervised Gait Generation With Two Microfluidic Soft Sensors
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第3期4卷 2501-2507页
作者: Kim, Dooyoung Kim, Min Kwon, Junghan Park, Yong-Lae Jo, Sungho Korea Adv Inst Sci & Technol Sch Comp Daejeon 305701 South Korea Seoul Natl Univ Dept Mech Engn & Aerosp Engn Seoul 08826 South Korea Seoul Natl Univ Inst Adv Machines & Design Seoul 08826 South Korea
Nowadays, the use of deep learning for the calibration of soft wearable sensors has addressed the typical drawbacks of the microfluidic soft sensors, such as hysteresis and nonlinearity. However, previous studies have... 详细信息
来源: 评论
learning to Predict Ego-Vehicle Poses for Sampling-Based Nonholonomic Motion Planning
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1053-1060页
作者: Banzhaf, Holger Sanzenbacher, Paul Baumann, Ulrich Zoellner, J. Marius Robert Bosch GmbH Corp Res Automated Driving D-71272 Renningen Germany FZI Res Ctr Informat Technol D-76131 Karlsruhe Germany
Sampling-based motion planning is an effective tool to compute safe trajectories for automated vehicles in complex environments. However, a fast convergence to the optimal solution can only be ensured with the use of ... 详细信息
来源: 评论
Normalization in Training U-Net for 2-D Biomedical Semantic Segmentation
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1792-1799页
作者: Zhou, Xiao-Yun Yang, Guang-Zhong Imperial Coll London Hamlyn Ctr Robot Surg London SW7 2AZ England
Two-dimensional (2-D) biomedical semantic segmentation is important for robotic vision in surgery. Segmentation methods based on deep convolutional neural network (DCNN) can out-perform conventional methods in terms o... 详细信息
来源: 评论