咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=Deep Learning in Robotics and Automation"
221 条 记 录,以下是131-140 订阅
排序:
SGANVO: Unsupervised deep Visual Odometry and Depth Estimation With Stacked Generative Adversarial Networks
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4431-4437页
作者: Feng, Tuo Gu, Dongbing Univ Essex Sch Comp Sci & Elect Engn Colchester CO4 3SQ Essex England
Recently end-to-end unsupervised deep learning methods have demonstrated an impressive performance for visual depth and ego-motion estimation tasks. These data-based learning methods do not rely on the same limiting a... 详细信息
来源: 评论
Robot-Assisted Training in Laparoscopy Using deep Reinforcement learning
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 485-492页
作者: Tan, Xiaoyu Chng, Chin-Boon Su, Ye Lim, Kah-Bin Chui, Chee-Kong Natl Univ Singapore Dept Mech Engn Singapore 119077 Singapore
Minimally invasive surgery (MIS) is increasingly becoming a vital method of reducing surgical trauma and significantly improving postoperative recovery. However, skillful handling of surgical instruments used in MIS, ... 详细信息
来源: 评论
Convolutional Autoencoder for Feature Extraction in Tactile Sensing
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 3671-3678页
作者: Polic, Marsela Krajacic, Ivona Lepora, Nathan Orsag, Matko Univ Zagreb Fac Elect Engn & Comp Lab Robot & Intelligent Control Syst Zagreb 10000 Croatia Univ Bristol Dept Engn Math Bristol BS8 1UB Avon England Univ Bristol Bristol Robot Lab Bristol BS8 1UB Avon England
A common approach in the field of tactile robotics is the development of a new perception algorithm for each new application of existing hardware solutions. In this letter, we present a method of dimensionality reduct... 详细信息
来源: 评论
Efficient collection and automatic annotation of real-world object images by taking advantage of post-diminished multiple visual markers
收藏 引用
ADVANCED robotics 2019年 第24期33卷 1264-1280页
作者: Kiyokawa, Takuya Tomochika, Keita Takamatsu, Jun Ogasawara, Tsukasa Nara Inst Sci & Technol Div Informat Sci Nara Japan
To collect a human-annotated dataset for training deep convolutional neural networks is a very time-consuming and laborious process. To reduce this burden, we previously proposed an automated annotation by placing one... 详细信息
来源: 评论
Low-Level Control of a Quadrotor With deep Model-Based Reinforcement learning
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4224-4230页
作者: Lambert, Nathan O. Drewe, Daniel S. Yaconelli, Joseph Levine, Sergey Calandra, Roberto Pister, Kristofer S. J. Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94720 USA Univ Oregon Eugene OR 97403 USA Facebook AI Res Menlo Pk CA 94025 USA
Designing effective low-level robot controllers often entail platform-specific implementations that require manual heuristic parameter tuning, significant system knowledge, or long design times. With the rising number... 详细信息
来源: 评论
learning Navigation Behaviors End-to-End With AutoRL
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 2007-2014页
作者: Chiang, Hao-Tien Lewis Faust, Aleksandra Fiser, Marek Francis, Anthony Google AI Google Robot Mountain View CA 94043 USA
We learn end-to-end point-to-point and pathfollowing navigation behaviors that avoid moving obstacles. These policies receive noisy lidar observations and output robot linear and angular velocities. The policies are t... 详细信息
来源: 评论
Sliding-Window Temporal Attention Based deep learning System for Robust Sensor Modality Fusion for UGV Navigation
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4216-4223页
作者: Unlu, Halil Utku Patel, Naman Krishnamurthy, Prashanth Khorrami, Farshad NYU Tandon Sch Engn Dept Elect & Comp Engn Controls Robot Res Lab Brooklyn NY 11201 USA
We propose a novel temporal attention based neural network architecture for robotics tasks that involve fusion of time series of sensor data, and evaluate the performance improvements in the context of autonomous navi... 详细信息
来源: 评论
RL-RRT: Kinodynamic Motion Planning via learning Reachability Estimators From RL Policies
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4298-4305页
作者: Chiang, Hao-Tien Lewis Hsu, Jasmine Fiser, Marek Tapia, Lydia Faust, Aleksandra Google AI Robot Google Mountain View CA 94043 USA Univ New Mexico Dept Comp Sci Albuquerque NM 87131 USA
This letter addresses two challenges facing sampling-based kinodynamic motion planning: a way to identify good candidate states for local transitions and the subsequent computationally intractable steering between the... 详细信息
来源: 评论
On-Policy Dataset Synthesis for learning Robot Grasping Policies Using Fully Convolutional deep Networks
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1357-1364页
作者: Satish, Vishal Mahler, Jeffrey Goldberg, Ken Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94705 USA Univ Calif Berkeley Dept Ind Operat & Engn Res Berkeley CA 94705 USA
Rapid and reliable robot grasping for a diverse set of objects has applications from warehouse automation to home de-cluttering. One promising approach is to learn deep policies from synthetic training datasets of poi... 详细信息
来源: 评论
Multi-View Incremental Segmentation of 3-D Point Clouds for Mobile Robots
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1240-1246页
作者: Chen, Jingdao Cho, Yong Kwon Kira, Zsolt Georgia Inst Technol Inst Robot & Intelligent Machines Atlanta GA 30332 USA Georgia Inst Technol Sch Civil & Environm Engn Atlanta GA 30332 USA
Mobile robots need to create high-definition three-dimensional (3-D) maps of the environment for applications such as remote surveillance and infrastructure mapping. Accurate semantic processing of the acquired 3-D po... 详细信息
来源: 评论