咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=Deep Learning in Robotics and Automation"
221 条 记 录,以下是171-180 订阅
排序:
Rover-IRL: Inverse Reinforcement learning With Soft Value Iteration Networks for Planetary Rover Path Planning
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1387-1394页
作者: Pflueger, Max Agha, Ali Sukhatme, Gaurav S. Univ Southern Calif Dept Comp Sci Los Angeles CA 90089 USA CALTECH Jet Prop Lab 4800 Oak Grove Dr Pasadena CA 91109 USA
Planetary rovers, such as those currently on Mars, face difficult path planning problems, both before landing during the mission planning stages as well as once on the ground. In this work, we present a new approach t... 详细信息
来源: 评论
Collision Detection for Industrial Collaborative Robots: A deep learning Approach
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 740-746页
作者: Heo, Young Jin Kim, Dayeon Lee, Woongyong Kim, Hyoungkyun Park, Jonghoon Chung, Wan Kyun Neuromeka Seoul 06023 South Korea POSTECH Dept Mech Engn Pohang 790784 South Korea
With increased human-robot interactions in industrial settings, a safe and reliable collision detection framework has become an indispensable element of collaborative robots. The conventional framework detects collisi... 详细信息
来源: 评论
Monocular Camera Based Fruit Counting and Mapping With Semantic Data Association
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第3期4卷 2296-2303页
作者: Liu, Xu Chen, Steven W. Liu, Chenhao Shivakumar, Shreyas S. Das, Jnaneshwar Taylor, Camillo J. Underwood, James Kumar, Vijay Univ Penn Grasp Lab Philadelphia PA 19104 USA Arizona State Univ Sch Earth & Space Explorat Tempe AZ 85281 USA Univ Sydney Australian Ctr Field Robot Camperdown NSW 2006 Australia
In this letter, we present a cheap, lightweight, and fast fruit counting pipeline. Our pipeline relies only on a monocular camera, and achieves counting performance comparable to a state-of-the-art fruit counting syst... 详细信息
来源: 评论
Sensor Transfer: learning Optimal Sensor Effect Image Augmentation for Sim-to-Real Domain Adaptation
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第3期4卷 2431-2438页
作者: Carlson, Alexandra Skinner, Katherine A. Vasudevan, Ram Johnson-Roberson, Matthew Univ Michigan Robot Inst Ann Arbor MI 48109 USA Univ Michigan Dept Mech Engn Ann Arbor MI 48109 USA Univ Michigan Dept Naval Architecture & Marine Engn Ann Arbor MI 48109 USA
Performance on benchmark datasets has drastically improved with advances in deep learning. Still, cross-dataset generalization performance remains relatively low due to the domain shift that can occur between two diff... 详细信息
来源: 评论
From Pixels to Percepts: Highly Robust Edge Perception and Contour Following Using deep learning and an Optical Biomimetic Tactile Sensor
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 2101-2107页
作者: Lepora, Nathan E. Church, Alex de Kerckhove, Conrad Hadsell, Raia Lloyde, John Univ Bristol Dept Engn Math Bristol BS8 1QU Avon England Univ Bristol Bristol Robot Lab Bristol BS8 1QU Avon England Google DeepMind London N1C 4AG England
deep learning has the potential to have same the impact on robot touch as it has had on robot vision. Optical tactile sensors act as a bridge between the subjects by allowing techniques from vision to be applied to to... 详细信息
来源: 评论
deep Reinforcement learning Robot for Search and Rescue Applications: Exploration in Unknown Cluttered Environments
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 610-617页
作者: Niroui, Farzad Zhang, Kaicheng Kashino, Zendai Nejat, Goldie Univ Toronto Dept Mech & Ind Engn Autonomous Syst & Biomechatron Lab Toronto ON M5S 3G8 Canada
Rescue robots can be used in urban search and rescue (USAR) applications to perform the important task of exploring unknown cluttered environments. Due to the unpredictable nature of these environments, deep learning ... 详细信息
来源: 评论
Multi-Task Regression-Based learning for Autonomous Unmanned Aerial Vehicle Flight Control Within Unstructured Outdoor Environments
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4116-4123页
作者: Maciel-Pearson, Bruna G. Akcay, Samet Atapour-Abarghouei, Amir Holder, Christopher Breckon, Toby P. Univ Durham Dept Comp Sci Durham DH1 3LE England
Increased growth in the global unmanned aerial vehicles (UAV) (drone) industry has expanded possibilities for fully autonomous UAV applications. A particular application which has in part motivated this research is th... 详细信息
来源: 评论
Understanding Natural Language Instructions for Fetching Daily Objects Using GAN-Based Multimodal Target-Source Classification
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 3884-3891页
作者: Magassouba, Aly Sugiura, Komei Anh Trinh Quoc Kawai, Hisashi Natl Inst Informat & Commun Technol Kyoto 6190289 Japan
In this letter, we address multimodal language understanding with unconstrained fetching instruction for domestic service robots. A typical fetching instruction such as "Bring me the yellow toy from the white she... 详细信息
来源: 评论
Planning Approximate Exploration Trajectories for Model-Free Reinforcement learning in Contact-Rich Manipulation
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4042-4047页
作者: Hoppe, Sabrina Lou, Zhongyu Hennes, Daniel Toussaint, Marc Bosch Corp Res D-71272 Stuttgart Germany Univ Stuttgart Machine Learning & Robot Lab D-70174 Stuttgart Germany
Recent progress in deep reinforcement learning has enabled simulated agents to learn complex behavior policies from scratch, but their data complexity often prohibits real-world applications. The learning process can ... 详细信息
来源: 评论
Reinforcement learning based on movement primitives for contact tasks
收藏 引用
robotics AND COMPUTER-INTEGRATED MANUFACTURING 2020年 62卷 101863-000页
作者: Kim, Young-Loul Ahn, Kuk-Hyun Song, Jae-Bok Korea Univ Sch Mech Engn Seoul 02841 South Korea
Recently, robot learning through deep reinforcement learning has incorporated various robot tasks through deep neural networks, without using specific control or recognition algorithms. However, this learning method i... 详细信息
来源: 评论