咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=Deep Learning in Robotics and Automation"
221 条 记 录,以下是31-40 订阅
排序:
Active Multiobject Exploration and Recognition via Tactile Whiskers
收藏 引用
IEEE TRANSACTIONS ON robotics 2022年 第6期38卷 3479-3497页
作者: Xiao, Chenxi Xu, Shujia Wu, Wenzhuo Wachs, Juan Purdue Univ Sch Ind Engn W Lafayette IN 47907 USA
Robotic exploration under uncertain environments is challenging when optical information is not available. In this article, we propose an autonomous solution of exploring an unknown task space based on tactile sensing... 详细信息
来源: 评论
Dynamic Fusion Module Evolves Drivable Area and Road Anomaly Detection: A Benchmark and Algorithms
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2022年 第10期52卷 10750-10760页
作者: Wang, Hengli Fan, Rui Sun, Yuxiang Liu, Ming Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China Univ Calif San Diego Dept Comp Sci & Engn La Jolla CA 92093 USA Univ Calif San Diego Dept Ophthalmol La Jolla CA 92093 USA Hong Kong Polytech Univ Dept Mech Engn Hong Kong Peoples R China
Joint detection of drivable areas and road anomalies is very important for mobile robots. Recently, many semantic segmentation approaches based on convolutional neural networks (CNNs) have been proposed for pixelwise ... 详细信息
来源: 评论
Cat-Like Jumping and Landing of Legged Robots in Low Gravity Using deep Reinforcement learning
收藏 引用
IEEE TRANSACTIONS ON robotics 2022年 第1期38卷 317-328页
作者: Rudin, Nikita Kolvenbach, Hendrik Tsounis, Vassilios Hutter, Marco Swiss Fed Inst Technol Robot Syst Lab CH-8092 Zurich Switzerland
In this article, we show that learned policies can be applied to solve legged locomotion control tasks with extensive flight phases, such as those encountered in space exploration. Using an off-the-shelf deep reinforc... 详细信息
来源: 评论
Flow: A Modular learning Framework for Mixed Autonomy Traffic
收藏 引用
IEEE TRANSACTIONS ON robotics 2022年 第2期38卷 1270-1286页
作者: Wu, Cathy Kreidieh, Abdul Rahman Parvate, Kanaad Vinitsky, Eugene Bayen, Alexandre M. MIT Informat & Decis Syst Lab Cambridge MA 02139 USA MIT Dept Civil & Environm Engn 77 Massachusetts Ave Cambridge MA 02139 USA MIT Inst Data Syst & Soc 77 Massachusetts Ave Cambridge MA 02139 USA Univ Calif Berkeley Dept Civil & Environm Engn Berkeley CA 94720 USA Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94720 USA Univ Calif Berkeley Dept Mech Engn Berkeley CA 94720 USA Univ Calif Berkeley Inst Transportat Studies Berkeley CA 94720 USA
The rapid development of autonomous vehicles (AVs) holds vast potential for transportation systems through improved safety, efficiency, and access to mobility. However, the progression of these impacts, as AVs are ado... 详细信息
来源: 评论
Robot grasping in dense clutter via view-based experience transfer
收藏 引用
INTERNATIONAL JOURNAL OF INTELLIGENT robotics AND APPLICATIONS 2022年 第1期6卷 23-37页
作者: Wang, Jen-Wei Li, Chia-Lien Chen, Jian-Lun Lee, Jyh-Jone Natl Taiwan Univ Dept Mech Engn Taipei 106 Taiwan
To perform object grasping in dense clutter, we propose a novel algorithm for grasp detection. To obtain grasp candidates, we developed instance segmentation and view-based experience transfer as part of the algorithm... 详细信息
来源: 评论
deep REINFORCEMENT learning BASED PATH PLANNING FOR MOBILE ROBOTS USING TIME-SENSITIVE REWARD  19
DEEP REINFORCEMENT LEARNING BASED PATH PLANNING FOR MOBILE R...
收藏 引用
19th IEEE International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)
作者: Zhao Ruqing Lu Xin Lyu Shubin Zhang Jihuai Li Fusheng Univ Elect Sci & Technol China Sch Automat Engn Chengdu 611731 Peoples R China Univ Elect Sci & Technol China Yangtze Delta Reg Inst Huzhou 313000 Peoples R China
In the mobile robots' field, the global path planning task in known map scenarios is an urgent problem to be solved. deep Reinforcement learning (DRL), an efficient decision-making method, has been widely used to ... 详细信息
来源: 评论
Multi-Agent Pathfinding for Deadlock Avoidance on Rotational Movements  17
Multi-Agent Pathfinding for Deadlock Avoidance on Rotational...
收藏 引用
17th International Conference on Control, automation, robotics and Vision (ICARCV)
作者: Chan, Frodo Kin Sun Law, Yan Nei Lu, Bonny Chick, Tom Lai, Edmond Shiao Bun Ge, Ming Hong Kong Ind Artificial Intelligence & Robot Ctr Hong Kong Peoples R China
Deadlock is always a challenging problem for multi-agent pathfinding, especially when the system is in high scales in terms of number of agents and map size. Some recent studies showed that the agents can learn to res... 详细信息
来源: 评论
AI Co-Pilot Object Recognition for Sensory Soft Robotic Grippers
收藏 引用
IEEE TRANSACTIONS ON automation SCIENCE AND ENGINEERING 2024年
作者: Zhang, Tengxin Liu, Xiaotong Song, Yang Tang, Yan Xia, Haisheng Li, Zhijun Shi, Peng Tongji Univ Shanghai Yangzhi Rehabil Hosp Translat Res Ctr Shanghai Sunshine Rehabil CtrSch Mech Engn Shanghai 201804 Peoples R China Univ Sci & Technol China Inst Adv Technol Hefei 230026 Peoples R China Tongji Univ Sch Elect & Informat Engn Shanghai 200092 Peoples R China Tongji Univ Sch Mech Engn Shanghai 200092 Peoples R China Univ Adelaide Sch Elect & Mech Engn Adelaide SA 5005 Australia Obuda Univ Res & Innovat Ctr H-1034 Budapest Hungary
Developing non-visual sensing and intelligent recognition technologies is crucial for enhancing the manipulation performance of robots in dim or obstructed environments. Although precise object recognition has been ex... 详细信息
来源: 评论
LRGNet: Learnable Region Growing for Class-Agnostic Point Cloud Segmentation
收藏 引用
IEEE robotics AND automation LETTERS 2021年 第2期6卷 2799-2806页
作者: Chen, Jingdao Kira, Zsolt Cho, Yong K. Georgia Inst Technol Inst Robot & Intelligent Machines Atlanta GA 30332 USA
3D point cloud segmentation is an important function that helps robots understand the layout of their surrounding environment and perform tasks such as grasping objects, avoiding obstacles, and finding landmarks. Curr... 详细信息
来源: 评论
A Single-Stream Segmentation and Depth Prediction CNN for Autonomous Driving
收藏 引用
IEEE INTELLIGENT SYSTEMS 2021年 第4期36卷 79-85页
作者: Aladem, Mohamed Rawashdeh, Samir A. Univ Michigan Dearborn Dearborn MI 48128 USA
Convolutional neural networks (CNN) have been used successfully in solving many challenging visual perception tasks facing mobile robots and self-driving cars. To facilitate deploying such models on embedded hardware ... 详细信息
来源: 评论