咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 1 篇 image augmentati...
  • 1 篇 contrastive lear...
  • 1 篇 deep model robus...
  • 1 篇 few-shot object ...

机构

  • 1 篇 beijing informat...
  • 1 篇 beijing jiaotong...
  • 1 篇 beijing jiaotong...
  • 1 篇 univ cent florid...

作者

  • 1 篇 liu zixia
  • 1 篇 zhang shunli
  • 1 篇 wang liqiang
  • 1 篇 xing weiwei
  • 1 篇 yao jie
  • 1 篇 liu weibin

语言

  • 1 篇 英文
检索条件"主题词=Deep Model Robustness"
1 条 记 录,以下是1-10 订阅
排序:
Contrastive JS: A Novel Scheme for Enhancing the Accuracy and robustness of deep models
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2023年 25卷 7881-7893页
作者: Xing, Weiwei Yao, Jie Liu, Zixia Liu, Weibin Zhang, Shunli Wang, Liqiang Beijing Jiaotong Univ Sch Software Engn Beijing 100044 Peoples R China Beijing Informat Sci & Technol Univ Sch Informat Management Beijing 100192 Peoples R China Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing 100044 Peoples R China Univ Cent Florida Dept Comp Sci Orlando FL 32816 USA
deep learning technologies have been applied in various computer vision tasks in recent years. However, deep models suffer performance decay when some unforeseen data are contained in the testing dataset. Although dat... 详细信息
来源: 评论