咨询与建议

限定检索结果

文献类型

  • 7 篇 期刊文献
  • 5 篇 会议

馆藏范围

  • 12 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 9 篇 计算机科学与技术...
    • 8 篇 电气工程
    • 4 篇 信息与通信工程
    • 3 篇 交通运输工程
    • 2 篇 控制科学与工程
    • 2 篇 软件工程
    • 2 篇 安全科学与工程
    • 2 篇 网络空间安全
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
  • 2 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 1 篇 理学
    • 1 篇 化学
    • 1 篇 生物学

主题

  • 12 篇 deep neural netw...
  • 5 篇 deep learning
  • 3 篇 training
  • 2 篇 computer archite...
  • 2 篇 neural networks
  • 2 篇 computational mo...
  • 2 篇 pruning
  • 2 篇 filter pruning
  • 2 篇 network pruning
  • 1 篇 data imbalance
  • 1 篇 input mask
  • 1 篇 knowledge engine...
  • 1 篇 object detection
  • 1 篇 light field syst...
  • 1 篇 lottery ticket h...
  • 1 篇 weighted score-b...
  • 1 篇 task analysis
  • 1 篇 indexes
  • 1 篇 proposals
  • 1 篇 cooperative q-le...

机构

  • 2 篇 wayne state univ...
  • 2 篇 inha univ dept e...
  • 1 篇 peng cheng lab a...
  • 1 篇 univ hong kong d...
  • 1 篇 peking univ sch ...
  • 1 篇 south china univ...
  • 1 篇 beijing univ tec...
  • 1 篇 interdigital ai ...
  • 1 篇 astar inst infoc...
  • 1 篇 carleton univ de...
  • 1 篇 dalian univ tech...
  • 1 篇 carleton univ sc...
  • 1 篇 tallinn univ tec...
  • 1 篇 tallinn univ tec...
  • 1 篇 univ calif berke...
  • 1 篇 graz univ techno...

作者

  • 2 篇 song byung cheol
  • 2 篇 he qisheng
  • 2 篇 dong ming
  • 1 篇 lee dongjun
  • 1 篇 wu min
  • 1 篇 ademola olutosin...
  • 1 篇 lee seunghyun
  • 1 篇 bi ran
  • 1 篇 ng michael k.
  • 1 篇 ren jiankang
  • 1 篇 leier mairo
  • 1 篇 son suho
  • 1 篇 ni zheng
  • 1 篇 yang ruizhe
  • 1 篇 tan guozhen
  • 1 篇 st-hilaire marc
  • 1 篇 zhou linjie
  • 1 篇 shi wei
  • 1 篇 liu ye
  • 1 篇 papadimitriou di...

语言

  • 10 篇 英文
  • 2 篇 其他
检索条件"主题词=Deep Neural Network Compression"
12 条 记 录,以下是1-10 订阅
排序:
deep neural network compression by Tucker decomposition with nonlinear response
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2022年 241卷
作者: Liu, Ye Ng, Michael K. South China Univ Technol Sch Future Technol Guangzhou Guangdong Peoples R China Univ Hong Kong Dept Math Pokfulam Hong Kong Peoples R China
deep neural networks have shown impressive performance in many areas, including computer vision and natural language processing. Millions of parameters in deep neural network limit its deployment in low-end devices du... 详细信息
来源: 评论
Evaluation of deep neural network compression Methods for Edge Devices Using Weighted Score-Based Ranking Scheme
收藏 引用
SENSORS 2021年 第22期21卷 7529页
作者: Ademola, Olutosin Ajibola Leier, Mairo Petlenkov, Eduard Tallinn Univ Technol Dept Comp Syst Embedded AI Res Lab Ehitajate Tee 5 EE-19086 Tallinn Estonia Tallinn Univ Technol Ctr Intelligent Syst Dept Comp Syst Ehitajate Tee 5 EE-19086 Tallinn Estonia
The demand for object detection capability in edge computing systems has surged. As such, the need for lightweight Convolutional neural network (CNN)-based object detection models has become a focal point. Current mod... 详细信息
来源: 评论
Compressing neural networks on Limited Computing Resources
收藏 引用
IEEE ACCESS 2025年 13卷 80063-80075页
作者: Lee, Seunghyun Lee, Dongjun Hyun, Minju Kim, Heeje Song, Byung Cheol Inha Univ Dept Elect & Comp Engn Incheon 22212 South Korea
network compression is a crucial technique for applying deep learning models to edge or mobile devices. However, the cost of achieving higher benchmark performance through compression is continuously increasing, makin... 详细信息
来源: 评论
QLP: deep Q-Learning for Pruning deep neural networks
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2022年 第10期32卷 6488-6501页
作者: Camci, Efe Gupta, Manas Wu, Min Lin, Jie ASTAR Inst Infocomm Res I2R Singapore 138632 Singapore
We present a novel, deep Q-learning based method, QLP, for pruning deep neural networks (DNNs). Given a DNN, our method intelligently determines favorable layer-wise sparsity ratios, which are then implemented via uns... 详细信息
来源: 评论
Multiaccess Edge Integrated networking for Internet of Vehicles: A Blockchain-Based deep Compressed Cooperative Learning Approach
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2022年 第11期23卷 21593-21607页
作者: Zhang, Dajun Shi, Wei St-Hilaire, Marc Yang, Ruizhe Carleton Univ Dept Syst & Comp Engn Ottawa ON K1S 5B6 Canada Carleton Univ Sch Informat Technol Ottawa ON K1S 5B6 Canada Beijing Univ Technol Beijing Lab Adv Informat Networks Beijing 100021 Peoples R China
Recently, Internet of Vehicles (IoV) and Machine Learning (ML) have attracted more and more attention. Considering inefficient real-time training and high requirements on computing capabilities of centralized data col... 详细信息
来源: 评论
Learning Pruned Structure and Weights Simultaneously from Scratch: an Attention based Approach
Learning Pruned Structure and Weights Simultaneously from Sc...
收藏 引用
2023 IEEE International Conference on Big Data, BigData 2023
作者: He, Qisheng Shi, Weisong Dong, Ming Wayne State University Department of Computer Science Detroit United States
As a deep learning model typically contains millions of trainable weights, there has been a growing demand for a more efficient network structure with reduced storage space and improved run-time efficiency. Pruning is... 详细信息
来源: 评论
Transferring Lottery Tickets in Computer Vision Models: A Dynamic Pruning Approach
Transferring Lottery Tickets in Computer Vision Models: A Dy...
收藏 引用
2023 IEEE International Conference on Big Data, BigData 2023
作者: He, Qisheng Dong, Ming Wayne State University Department of Computer Science Detroit United States
deep neural networks can achieve state-of-the-art results on small size datasets by transferring the backbone from a network pre-trained on large datasets. Recent work has shown that pruned networks can also be used a... 详细信息
来源: 评论
Energy-Efficient deep neural network Optimization via Pooling-Based Input Masking
Energy-Efficient Deep Neural Network Optimization via Poolin...
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on neural networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Ren, Jiankang Lv, Huawei Bi, Ran Liu, Qian Ni, Zheng Tan, Guozhen Dalian Univ Technol Sch Comp Sci & Technol Dalian Peoples R China
deep neural networks (DNNs) are increasingly deployed in battery-powered and resource-constrained devices. However, the most accurate DNNs usually require millions of parameters and operations, making them computation... 详细信息
来源: 评论
NMS-KSD: Efficient Knowledge Distillation for Dense Object Detection via Non-Maximum Suppression and Feature Storage
收藏 引用
IEEE ACCESS 2025年 13卷 80723-80736页
作者: Son, Suho Song, Byung Cheol Inha Univ Dept Elect & Comp Engn Incheon 22212 South Korea
Recently, many studies have proposed knowledge distillation (KD) frameworks for object detection. However, these frameworks did not take into account the inefficiencies caused by the teacher detector. The inefficiency... 详细信息
来源: 评论
A Fast View Synthesis Implementation Method for Light Field Applications
收藏 引用
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 2021年 第4期17卷 1–20页
作者: Gao, Wei Zhou, Linjie Tao, Lvfang Peking Univ Sch Elect & Comp Engn Shenzhen Grad Sch Shenzhen 518055 Peoples R China Peng Cheng Lab Artificial Intelligence Res Ctr Shenzhen 518055 Peoples R China
View synthesis (VS) for light field images is a very time-consuming task due to the great quantity of involved pixels and intensive computations, which may prevent it from the practical three-dimensional real-time sys... 详细信息
来源: 评论