咨询与建议

限定检索结果

文献类型

  • 5 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 7 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7 篇 工学
    • 5 篇 电气工程
    • 4 篇 计算机科学与技术...
    • 2 篇 软件工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
  • 3 篇 理学
    • 3 篇 物理学
  • 2 篇 医学
    • 1 篇 临床医学
    • 1 篇 特种医学

主题

  • 7 篇 deep algorithm u...
  • 5 篇 graph signal pro...
  • 3 篇 signal denoising
  • 2 篇 noise reduction
  • 2 篇 task analysis
  • 2 篇 image restoratio...
  • 2 篇 signal restorati...
  • 2 篇 optimization
  • 2 篇 plug-and-play ad...
  • 2 篇 symmetric matric...
  • 2 篇 signal processin...
  • 1 篇 deep learning
  • 1 篇 pnp-admm
  • 1 篇 time-varying gra...
  • 1 篇 multimodal data
  • 1 篇 graph learning
  • 1 篇 optimization alg...
  • 1 篇 image reconstruc...
  • 1 篇 multispectral ph...

机构

  • 3 篇 tokyo univ agr &...
  • 2 篇 tokyo univ agr &...
  • 2 篇 purdue univ sch ...
  • 2 篇 japan sci & tech...
  • 2 篇 tokyo univ sci d...
  • 2 篇 weizmann inst sc...
  • 1 篇 weizmann inst sc...
  • 1 篇 osaka university...
  • 1 篇 osaka univ osaka
  • 1 篇 tokyo university...
  • 1 篇 southern med uni...
  • 1 篇 ntt corp yokosuk...
  • 1 篇 hosei univ
  • 1 篇 southern med uni...
  • 1 篇 tokyo university...
  • 1 篇 japan sci & tech...
  • 1 篇 southern med uni...
  • 1 篇 purdue univ w la...

作者

  • 6 篇 tanaka yuichi
  • 4 篇 nagahama masatos...
  • 4 篇 yamada koki
  • 3 篇 eldar yonina c.
  • 3 篇 chan stanley h.
  • 1 篇 hu chaobin
  • 1 篇 bandoh yukihiro
  • 1 篇 mo zongxin
  • 1 篇 zhang xiaoming
  • 1 篇 ge jia
  • 1 篇 liang zhaoyong
  • 1 篇 zhang shuangyang
  • 1 篇 zhong yutian
  • 1 篇 takanami keigo
  • 1 篇 kojima hayate
  • 1 篇 noguchi hikari
  • 1 篇 takamura seishi
  • 1 篇 chen wufan
  • 1 篇 qi li

语言

  • 7 篇 英文
检索条件"主题词=Deep algorithm unrolling"
7 条 记 录,以下是1-10 订阅
排序:
MULTIMODADL GRAPH SIGNAL DENOISING WITH SIMULTANEOUS GRAPH LEARNING USING deep algorithm unrolling  30
MULTIMODADL GRAPH SIGNAL DENOISING WITH SIMULTANEOUS GRAPH L...
收藏 引用
30th IEEE International Conference on Image Processing (ICIP)
作者: Takanami, Keigo Bandoh, Yukihiro Takamura, Seishi Tanaka, Yuichi Tokyo Univ Agr & Technol Tokyo Japan Osaka Univ Osaka Japan NTT Corp Yokosuka Kanagawa Japan Hosei Univ Tokyo Japan
We propose a simultaneous method of multimodal graph signal denoising and graph learning. Since sensor networks distributed in space can capture multiple modalities of data, referred to as modalities, they are assumed... 详细信息
来源: 评论
Graph Signal Restoration Using Nested deep algorithm unrolling
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2022年 70卷 3296-3311页
作者: Nagahama, Masatoshi Yamada, Koki Tanaka, Yuichi Chan, Stanley H. Eldar, Yonina C. Tokyo Univ Agr & Technol Dept Elect Engn & Comp Sci Koganei Tokyo 1848588 Japan Japan Sci & Technol Agcy PRESTO Kawaguchi Saitama 3320012 Japan Tokyo Univ Sci Dept Elect Engn Tokyo 1258585 Japan Purdue Univ Sch Elect & Comp Engn W Lafayette IN 47907 USA Weizmann Inst Sci Fac Math & Comp Sci IL-7610001 Rehovot Israel
Graph signal processing is a ubiquitous task in many applications such as sensor, social, transportation and brain networks, point cloud processing, and graph neural networks. Often, graph signals are corrupted in the... 详细信息
来源: 评论
Restoration of Time-Varying Graph Signals using deep algorithm unrolling  48
Restoration of Time-Varying Graph Signals using Deep Algorit...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Kojima, Hayate Noguchi, Hikari Yamada, Koki Tanaka, Yuichi Tokyo University of Agriculture and Technology Department of Electrical Engineering and Computer Science Japan Tokyo University of Science Department of Electrical Engineering Japan Osaka University Graduate School of Engineering Japan
In this paper, we propose a restoration method of time-varying graph signals, i.e., signals on a graph whose signal values change over time, using deep algorithm unrolling. deep algorithm unrolling is a method that le... 详细信息
来源: 评论
Image reconstruction of multispectral sparse sampling photoacoustic tomography based on deep algorithm unrolling
收藏 引用
PHOTOACOUSTICS 2024年 38卷 100618页
作者: Ge, Jia Mo, Zongxin Zhang, Shuangyang Zhang, Xiaoming Zhong, Yutian Liang, Zhaoyong Hu, Chaobin Chen, Wufan Qi, Li Southern Med Univ Sch Biomed Engn 1023 Shatai Rd Guangzhou 510515 Guangdong Peoples R China Southern Med Univ Guangdong Prov Key Lab Med Image Proc 1023 Shatai Rd Guangzhou 510515 Guangdong Peoples R China Southern Med Univ Guangdong Prov Engn Lab Med Imaging & Diagnost Tec 1023 Shatai Rd Guangzhou 510515 Guangdong Peoples R China
Photoacoustic tomography (PAT), as a novel medical imaging technology, provides structural, functional, and metabolism information of biological tissue in vivo. Sparse Sampling PAT, or SS-PAT, generates images with a ... 详细信息
来源: 评论
MULTIMODAL GRAPH SIGNAL DENOISING VIA TWOFOLD GRAPH SMOOTHNESS REGULARIZATION WITH deep algorithm unrolling  47
MULTIMODAL GRAPH SIGNAL DENOISING VIA TWOFOLD GRAPH SMOOTHNE...
收藏 引用
47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Nagahama, Masatoshi Tanaka, Yuichi Tokyo Univ Agr & Technol Tokyo Japan Japan Sci & Technol Agcy PRESTO Saitama Japan
We propose a denoising method of multimodal graph signals with twofold smoothness regularization. Graph signal processing assumes that a signal has an underlying structure that is represented by a graph. In each node ... 详细信息
来源: 评论
Graph Signal Restoration Using Nested deep algorithm unrolling
Graph Signal Restoration Using Nested Deep Algorithm Unrolli...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Nagahama, Masatoshi Yamada, Koki Tanaka, Yuichi Chan, Stanley H. Eldar, Yonina C. Tokyo Univ Agr & Technol Dept Elect Engn & Comp Sci Koganei Tokyo 1848588 Japan Japan Sci & Technol Agcy PRESTO Kawaguchi Saitama 3320012 Japan Tokyo Univ Sci Dept Elect Engn Tokyo 1258585 Japan Purdue Univ Sch Elect & Comp Engn W Lafayette IN 47907 USA Weizmann Inst Sci Fac Math & Comp Sci IL-7610001 Rehovot Israel
Graph signal processing is a ubiquitous task in many applications such as sensor, social, transportation and brain networks, point cloud processing, and graph neural networks. Often, graph signals are corrupted in the... 详细信息
来源: 评论
GRAPH SIGNAL DENOISING USING NESTED-STRUCTURED deep algorithm unrolling
GRAPH SIGNAL DENOISING USING NESTED-STRUCTURED DEEP ALGORITH...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Nagahama, Masatoshi Yamada, Koki Tanaka, Yuichi Chan, Stanley H. Eldar, Yonina C. Tokyo Univ Agr & Technol Tokyo Japan Purdue Univ W Lafayette IN 47907 USA Weizmann Inst Sci Rehovot Israel
In this paper, we propose a deep algorithm unrolling (DAU) based on a variant of the alternating direction method of multiplier (ADMM) called Plug-and-Play ADMM(PnP-ADMM) for denoising of signals on graphs. DAU is a t... 详细信息
来源: 评论