咨询与建议

限定检索结果

文献类型

  • 154 篇 期刊文献
  • 83 篇 会议

馆藏范围

  • 237 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 146 篇 计算机科学与技术...
    • 80 篇 电气工程
    • 25 篇 控制科学与工程
    • 25 篇 软件工程
    • 23 篇 信息与通信工程
    • 14 篇 仪器科学与技术
    • 12 篇 机械工程
    • 9 篇 电子科学与技术(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 安全科学与工程
    • 3 篇 动力工程及工程热...
    • 2 篇 光学工程
    • 2 篇 建筑学
    • 2 篇 交通运输工程
    • 2 篇 船舶与海洋工程
  • 44 篇 理学
    • 19 篇 生物学
    • 10 篇 物理学
    • 9 篇 数学
    • 9 篇 化学
    • 3 篇 地球物理学
    • 2 篇 地质学
  • 26 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 4 篇 特种医学
  • 26 篇 管理学
    • 23 篇 管理科学与工程(可...
  • 6 篇 农学
  • 4 篇 经济学
    • 3 篇 应用经济学
    • 2 篇 理论经济学
  • 2 篇 教育学
  • 1 篇 法学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 237 篇 deep autoencoder
  • 29 篇 deep learning
  • 24 篇 feature extracti...
  • 23 篇 anomaly detectio...
  • 9 篇 machine learning
  • 7 篇 transfer learnin...
  • 7 篇 deep neural netw...
  • 7 篇 fault detection
  • 7 篇 unsupervised lea...
  • 6 篇 fault diagnosis
  • 6 篇 dimensionality r...
  • 6 篇 neural networks
  • 6 篇 convolutional ne...
  • 5 篇 reinforcement le...
  • 5 篇 deep neural netw...
  • 4 篇 representation l...
  • 4 篇 random forest
  • 4 篇 graph regulariza...
  • 4 篇 multi-view clust...
  • 4 篇 prediction

机构

  • 4 篇 tampere univ uni...
  • 4 篇 univ chinese aca...
  • 3 篇 jozef stefan ins...
  • 2 篇 univ chinese aca...
  • 2 篇 giet univ sch en...
  • 2 篇 guizhou univ sch...
  • 2 篇 guangxi univ sch...
  • 2 篇 princess nourah ...
  • 2 篇 xi an jiao tong ...
  • 2 篇 northwestern pol...
  • 2 篇 univ sydney busi...
  • 2 篇 tulane univ ctr ...
  • 2 篇 emory univ atlan...
  • 2 篇 sejong univ
  • 2 篇 inst appl math &...
  • 2 篇 univ oviedo elec...
  • 2 篇 hunan normal uni...
  • 2 篇 belarusian state...
  • 2 篇 natl univ def te...
  • 2 篇 tulane univ dept...

作者

  • 4 篇 mishra krishna m...
  • 4 篇 huhtala kalevi j...
  • 3 篇 diaz ignacio
  • 3 篇 loncarevic zvezd...
  • 3 篇 gams andrej
  • 3 篇 krogerus tomi r.
  • 2 篇 wei hong-quan
  • 2 篇 bilodeau guillau...
  • 2 篇 roy pankaj raj
  • 2 篇 lam fan
  • 2 篇 gao junbin
  • 2 篇 hussain tanveer
  • 2 篇 xiang yang
  • 2 篇 pan yu
  • 2 篇 pan zhisong
  • 2 篇 petrovsky alexan...
  • 2 篇 naeini saeed sav...
  • 2 篇 nayak dillip ran...
  • 2 篇 liu liu
  • 2 篇 becker martin

语言

  • 231 篇 英文
  • 4 篇 其他
  • 1 篇 法文
  • 1 篇 朝鲜文
  • 1 篇 中文
检索条件"主题词=Deep autoencoder"
237 条 记 录,以下是91-100 订阅
排序:
Topic Diffusion Discovery based on deep Non-negative autoencoder  21
Topic Diffusion Discovery based on Deep Non-negative Autoenc...
收藏 引用
21st IEEE International Conference on Information Reuse and Integration for Data Science (IEEE IRI)
作者: Huang, Sheng-Tai Kang, Yihuang Hung, Shao-Min Kuo, Bowen Cheng, I-Ling Natl Sun Yat Sen Univ Dept Informat Management Kaohsiung Taiwan Natl Chung Hsing Univ Grad Inst Lib & Informat Sci Taichung Taiwan
Researchers have been overwhelmed by the explosion of research articles published by various research communities. Many research scholarly websites, search engines, and digital libraries have been created to help rese... 详细信息
来源: 评论
deep autoencoders as anomaly detectors: Method and case study in a distributed water treatment plant
收藏 引用
COMPUTERS & SECURITY 2020年 99卷 102055-102055页
作者: Raman, Mr Gauthama Dong, Wenjie Mathur, Aditya Singapore Univ Technol & Design Ctr Cyber Secur Res iTrust Singapore Singapore
Industrial Control Systems (ICS) are found in critical infrastructure, such as, water treatment plants and oil refineries. ICS are often the target of cyber-attacks leading to undesirable consequences. It is essential... 详细信息
来源: 评论
Attribute graph anomaly detection utilizing memory networks enhanced by multi-embedding comparison
收藏 引用
NEUROCOMPUTING 2025年 633卷
作者: Zhang, Lianming Wu, Baolin Dong, Pingping Hunan Normal Univ Coll Informat Sci & Engn Changsha 410081 Peoples R China
In complex attribute networks, accurately pinpointing anomalous nodes is vital for grasping network behavior and safeguarding network security. Traditional anomaly detection methods often struggle to fully harness the... 详细信息
来源: 评论
Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder
收藏 引用
BRIEFINGS IN BIOINFORMATICS 2022年 第3期23卷 bbac104-bbac104页
作者: Liu, Wei Lin, Hui Huang, Li Peng, Li Tang, Ting Zhao, Qi Yang, Li Xiangtan Univ Sch Comp Sci Sch Cyberspace Sci Xiangtan Peoples R China Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Minist Educ Xiangtan 411105 Peoples R China Tsinghua Univ Acad Arts & Design Beijing Peoples R China Hunan Univ Sci & Technol Sch Comp Sci & Engn Xiangtan Peoples R China Univ Sci & Technol Liaoning Sch Comp Sci & Software Engn Anshan 114051 Peoples R China Xiangtan Univ Sch Publ Adm Xiangtan Peoples R China
Increasing evidences show that the occurrence of human complex diseases is closely related to microRNA (miRNA) variation and imbalance. For this reason, predicting disease-related miRNAs is essential for the diagnosis... 详细信息
来源: 评论
Optimisation of sparse deep autoencoders for dynamic network embedding
收藏 引用
CAAI Transactions on Intelligence Technology 2024年 第6期9卷 1361-1376页
作者: Huimei Tang Yutao Zhang Lijia Ma Qiuzhen Lin Liping Huang Jianqiang Li Maoguo Gong College of Computer Science and Software Engineering Shenzhen UniversityShenzhenChina Institute for Infocomm Research Agency for Science Technology and ResearchSingaporeSingapore Key Laboratory of Collaborative Intelligence Systems Ministry of EducationXidian UniversityXi'anChina
Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature ***,the existing deep learningbased NE methods are time-consuming as they need to train a dense... 详细信息
来源: 评论
EMI signal feature enhancement based on extreme energy difference and deep auto-encoder
收藏 引用
IET SIGNAL PROCESSING 2018年 第7期12卷 852-856页
作者: Li, Hongyi Chen, Shengyu Xu, Shaofeng Song, Ziming Chen, Jiaxin Zhao, Di Beihang Univ Sch Math & Syst Sci LMIB Beijing 100191 Peoples R China Beihang Univ Sch Software Beijing 100191 Peoples R China Fudan Univ Sch Comp Sci & Technol Shanghai 201203 Peoples R China New York Univ Abu Dhabi Dept Elect & Comp Engn Abu Dhabi U Arab Emirates
To enhance features of different electromagnetic interference (EMI) signals, which are significant for further feature extraction and pattern recognition, the authors propose an EMI signal feature enhancement method b... 详细信息
来源: 评论
Distributed Framework for Detecting PMU Data Manipulation Attacks With deep autoencoders
收藏 引用
IEEE TRANSACTIONS ON SMART GRID 2019年 第4期10卷 4401-4410页
作者: Wang, Jingyu Shi, Dongyuan Li, Yinhong Chen, Jinfu Ding, Hongfa Duan, Xianzhong Huazhong Univ Sci & Technol Sch Elect & Elect Engn State Key Lab Adv Electromagnet Engn & Technol Wuhan 430074 Hubei Peoples R China
Phasor measurement unit (PMU) data manipulation attacks (PDMAs) may blind the control centers to the real-time operating conditions of power systems. Detecting these attacks accurately is essential to ensure the norma... 详细信息
来源: 评论
Network intrusion detection system for DDoS attacks in ICS using deep autoencoders
收藏 引用
WIRELESS NETWORKS 2024年 第6期30卷 5059-5075页
作者: Ortega-Fernandez, Ines Sestelo, Marta Burguillo, Juan C. Pinon-Blanco, Camilo Galician Res & Dev Ctr Adv Telecommun GRADIANT Carretera Vilar 56-58 Vigo 36214 Spain Univ Vigo Dept Stat & OR SiDOR Res Grp Vigo 36310 Spain CITMAga Santiago De Compostela 15782 Spain Univ Vigo Escola Enxenaria Telecomunicac Vigo 36310 Spain Univ Vigo atlanTTic Res Ctr Vigo 36310 Spain
Anomaly detection in industrial control and cyber-physical systems has gained much attention over the past years due to the increasing modernisation and exposure of industrial environments. Current dangers to the conn... 详细信息
来源: 评论
Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study
收藏 引用
HUMAN BRAIN MAPPING 2019年 第3期40卷 944-954页
作者: Pinaya, Walter H. L. Mechelli, Andrea Sato, Joao R. Univ Fed ABC Ctr Math Comp & Cognit Rua Arcturus 03 BR-09606070 Sao Bernardo Do Campo SP Brazil Univ Fed ABC Ctr Engn Modeling & Appl Social Sci Sao Bernardo Do Campo SP Brazil Kings Coll London Inst Psychiat Psychol & Neurosci Dept Psychosis Studies London England
Machine learning is becoming an increasingly popular approach for investigating spatially distributed and subtle neuroanatomical alterations in brain-based disorders. However, some machine learning models have been cr... 详细信息
来源: 评论
Learning binary codes for fast image retrieval with sparse discriminant analysis and deep autoencoders
收藏 引用
INTELLIGENT DATA ANALYSIS 2023年 第3期27卷 809-831页
作者: Hong, Son An Huu, Quynh Nguyen Viet, Dung Cu Thuy, Quynh Dao Thi Quoc, Tao Ngo Viet Hung Univ Hanoi Vietnam Thuyloi Univ Hanoi Vietnam Posts & Telecommun Inst Technol Hanoi Vietnam Vietnam Acad Sci & Technol Inst Informat Technol Hanoi Vietnam
Image retrieval with relevant feedback on large and high-dimensional image databases is a challenging task. In this paper, we propose an image retrieval method, called BCFIR (Binary Codes for Fast Image Retrieval). BC... 详细信息
来源: 评论