咨询与建议

限定检索结果

文献类型

  • 154 篇 期刊文献
  • 83 篇 会议

馆藏范围

  • 237 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 146 篇 计算机科学与技术...
    • 80 篇 电气工程
    • 25 篇 控制科学与工程
    • 25 篇 软件工程
    • 23 篇 信息与通信工程
    • 14 篇 仪器科学与技术
    • 12 篇 机械工程
    • 9 篇 电子科学与技术(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 安全科学与工程
    • 3 篇 动力工程及工程热...
    • 2 篇 光学工程
    • 2 篇 建筑学
    • 2 篇 交通运输工程
    • 2 篇 船舶与海洋工程
  • 44 篇 理学
    • 19 篇 生物学
    • 10 篇 物理学
    • 9 篇 数学
    • 9 篇 化学
    • 3 篇 地球物理学
    • 2 篇 地质学
  • 26 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 4 篇 特种医学
  • 26 篇 管理学
    • 23 篇 管理科学与工程(可...
  • 6 篇 农学
  • 4 篇 经济学
    • 3 篇 应用经济学
    • 2 篇 理论经济学
  • 2 篇 教育学
  • 1 篇 法学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 237 篇 deep autoencoder
  • 29 篇 deep learning
  • 24 篇 feature extracti...
  • 23 篇 anomaly detectio...
  • 9 篇 machine learning
  • 7 篇 transfer learnin...
  • 7 篇 deep neural netw...
  • 7 篇 fault detection
  • 7 篇 unsupervised lea...
  • 6 篇 fault diagnosis
  • 6 篇 dimensionality r...
  • 6 篇 neural networks
  • 6 篇 convolutional ne...
  • 5 篇 reinforcement le...
  • 5 篇 deep neural netw...
  • 4 篇 representation l...
  • 4 篇 random forest
  • 4 篇 graph regulariza...
  • 4 篇 multi-view clust...
  • 4 篇 prediction

机构

  • 4 篇 tampere univ uni...
  • 4 篇 univ chinese aca...
  • 3 篇 jozef stefan ins...
  • 2 篇 univ chinese aca...
  • 2 篇 giet univ sch en...
  • 2 篇 guizhou univ sch...
  • 2 篇 guangxi univ sch...
  • 2 篇 princess nourah ...
  • 2 篇 xi an jiao tong ...
  • 2 篇 northwestern pol...
  • 2 篇 univ sydney busi...
  • 2 篇 tulane univ ctr ...
  • 2 篇 emory univ atlan...
  • 2 篇 sejong univ
  • 2 篇 inst appl math &...
  • 2 篇 univ oviedo elec...
  • 2 篇 hunan normal uni...
  • 2 篇 belarusian state...
  • 2 篇 natl univ def te...
  • 2 篇 tulane univ dept...

作者

  • 4 篇 mishra krishna m...
  • 4 篇 huhtala kalevi j...
  • 3 篇 diaz ignacio
  • 3 篇 loncarevic zvezd...
  • 3 篇 gams andrej
  • 3 篇 krogerus tomi r.
  • 2 篇 wei hong-quan
  • 2 篇 bilodeau guillau...
  • 2 篇 roy pankaj raj
  • 2 篇 lam fan
  • 2 篇 gao junbin
  • 2 篇 hussain tanveer
  • 2 篇 xiang yang
  • 2 篇 pan yu
  • 2 篇 pan zhisong
  • 2 篇 petrovsky alexan...
  • 2 篇 naeini saeed sav...
  • 2 篇 nayak dillip ran...
  • 2 篇 liu liu
  • 2 篇 becker martin

语言

  • 231 篇 英文
  • 4 篇 其他
  • 1 篇 法文
  • 1 篇 朝鲜文
  • 1 篇 中文
检索条件"主题词=Deep autoencoder"
237 条 记 录,以下是111-120 订阅
排序:
deep multiple non-negative matrix factorization for multi-view clustering
收藏 引用
INTELLIGENT DATA ANALYSIS 2021年 第2期25卷 339-357页
作者: Du, Guowang Zhou, Lihua Lu, Kevin Ding, Haiyan Yunnan Univ Sch Informat Kunming 650091 Yunnan Peoples R China Brunel Univ Uxbridge Middx England
Multi-view clustering aims to group similar samples into the same clusters and dissimilar samples into different clusters by integrating heterogeneous information from multi-view data. Non-negative matrix factorizatio... 详细信息
来源: 评论
Self-Supervised Speech Enhancement for Arabic Speech Recognition in Real-World Environments
收藏 引用
TRAITEMENT DU SIGNAL 2021年 第2期38卷 349-358页
作者: Dendani, Bilal Bahi, Halima Sari, Toufik Univ Badji Mokhtar Annaba Comp Sci Dept Annaba 23000 Algeria Univ Badji Mokhtar Annaba Labged Lab Annaba 23000 Algeria
Mobile speech recognition attracts much attention in the ubiquitous context, however, background noises, speech coding, and transmission errors are prone to corrupt the incoming speech. Therein, building a robust spee... 详细信息
来源: 评论
DMC-Fusion: deep Multi-Cascade Fusion With Classifier-Based Feature Synthesis for Medical Multi-Modal Images
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2021年 第9期25卷 3438-3449页
作者: Zuo, Qing Zhang, Jianping Yang, Yin Xiangtan Univ Sch Math & Comp Sci Xiangtan 411105 Peoples R China
Multi-modal medical image fusion is a challenging yet important task for precision diagnosis and surgical planning in clinical practice. Although single feature fusion strategy such as Densefuse has achieved inspiring... 详细信息
来源: 评论
An SSA-LC-DAE Method for Extracting Network Security Elements
收藏 引用
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2023年 第2期10卷 1175-1185页
作者: Tao, Xiaoling Liu, Ziyi Zhao, Feng Lan, Rushi Liu, Runrong Fu, Lianyou Ouyang, Yifu Guilin Univ Elect Technol Sch Comp Sci & Informat Secur Guilin 541004 Peoples R China Guilin Univ Elect Technol Sch Informat & Commun Guilin 541004 Peoples R China
In the current network environment, the original network data present the characteristics of multiple features and high dimensions. Furthermore, in the existing element extraction methods based on deep neural networks... 详细信息
来源: 评论
Learning autoencoder ensembles for detecting malware hidden communications in IoT ecosystems
收藏 引用
JOURNAL OF INTELLIGENT INFORMATION SYSTEMS 2024年 第4期62卷 925-949页
作者: Cassavia, Nunziato Caviglione, Luca Guarascio, Massimo Liguori, Angelica Zuppelli, Marco Inst High Performance Comp & Networking Via Pietro Bucci 8-9-C I-87036 Arcavacata Di Rende Italy Inst Appl Math & Informat Technol Via Marini 6 I-16149 Genoa Italy Univ Calabria Via Pietro Bucci I-87036 Arcavacata Di Rende Italy
Modern IoT ecosystems are the preferred target of threat actors wanting to incorporate resource-constrained devices within a botnet or leak sensitive information. A major research effort is then devoted to create coun... 详细信息
来源: 评论
Multiview Summarization and Activity Recognition Meet Edge Computing in IoT Environments
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2021年 第12期8卷 9634-9644页
作者: Hussain, Tanveer Muhammad, Khan Ullah, Amin Del Ser, Javier Gandomi, Amir H. Sajjad, Muhammad Baik, Sung Wook de Albuquerque, Victor Hugo C. Sejong Univ Seoul 143747 South Korea Sejong Univ Dept Software Seoul 143747 South Korea Univ Basque Res & Technol Alliance BRTA TECNALIA Derio 48160 Spain Univ Basque Country UPV EHU Dept Commun Engn Bilbao 48940 Spain Basque Ctr Appl Math BCAM Bilbao 48009 Spain Univ Technol Sydney Fac Engn & Informat Technol Ultimo NSW 2007 Australia Islamia Coll Peshawar Dept Comp Sci Peshawar 25000 Pakistan Univ Fortaleza Grad Program Appl Informat BR-60811905 Fortaleza Ceara Brazil Fed Inst Educ Sci & Technol Ceara LAPISCO Fortaleza Ceara Brazil ARMTEC Tecnol Robot Fortaleza Ceara Brazil
Multiview video summarization (MVS) has not received much attention from the research community due to inter-view correlations and views' overlapping, etc. The majority of previous MVS works are offline, relying o... 详细信息
来源: 评论
deep Multiview Clustering via Iteratively Self-Supervised Universal and Specific Space Learning
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2022年 第11期52卷 11734-11746页
作者: Zhang, Yue Huang, Qinjian Zhang, Bin He, Shengfeng Dan, Tingting Peng, Hong Cai, Hongmin Guangdong Polytech Normal Univ Sch Comp Sci Guangzhou 510665 Peoples R China South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China
Multiview clustering seeks to partition objects via leveraging cross-view relations to provide a comprehensive description of the same objects. Most existing methods assume that different views are linear transformabl... 详细信息
来源: 评论
Face Hallucination From New Perspective of Non-Linear Learning Compressed Sensing
收藏 引用
IEEE ACCESS 2020年 8卷 9434-9440页
作者: Yang, Shuyuan Hao, Xiaoyang Liu, Zhi Yang, Chen Wang, Min Xidian Univ Sch Artificial Intelligence Xian 710071 Peoples R China Xidian Univ Key Lab Radar Signal Proc Xian 710071 Peoples R China
The past decade has witnessed a prosperity of sparsity-inspired face hallucination methods that use sparse prior and instances to generate High-Resolution (HR) faces. However, they need numerous Low-Resolution (LR) an... 详细信息
来源: 评论
Adaptive fish school search optimized resnet for multi-view 3D objects reconstruction
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2024年 第32期83卷 77639-77666页
作者: Premalatha, V. Parveen, Nikhat Koneru Lakshmaiah Educ Fdn Dept Comp Sci & Engn Guntur Andhra Pradesh India
Reconstruction of multi-view 3-dimensional images is essential in robotics and computer vision to obtain an accurate 3-dimensional representation of objects by analyzing the 2-dimensional input data. For reconstructin... 详细信息
来源: 评论
DASVDD: deep Autoencoding Support Vector Data Descriptor for Anomaly Detection
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2024年 第8期36卷 3739-3750页
作者: Hojjati, Hadi Armanfard, Narges McGill Univ Dept Elect & Comp Engn Montreal PQ H3A 0C3 Canada Mila Quebec AI Inst QC H2S Montreal PQ Canada
One-Class anomaly detection aims to detect anomalies from normal samples using a model trained on normal data. With recent advancements in deep learning, researchers have designed efficient one-class anomaly detection... 详细信息
来源: 评论