咨询与建议

限定检索结果

文献类型

  • 154 篇 期刊文献
  • 83 篇 会议

馆藏范围

  • 237 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 146 篇 计算机科学与技术...
    • 80 篇 电气工程
    • 25 篇 控制科学与工程
    • 25 篇 软件工程
    • 23 篇 信息与通信工程
    • 14 篇 仪器科学与技术
    • 12 篇 机械工程
    • 9 篇 电子科学与技术(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 安全科学与工程
    • 3 篇 动力工程及工程热...
    • 2 篇 光学工程
    • 2 篇 建筑学
    • 2 篇 交通运输工程
    • 2 篇 船舶与海洋工程
  • 44 篇 理学
    • 19 篇 生物学
    • 10 篇 物理学
    • 9 篇 数学
    • 9 篇 化学
    • 3 篇 地球物理学
    • 2 篇 地质学
  • 26 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 4 篇 特种医学
  • 26 篇 管理学
    • 23 篇 管理科学与工程(可...
  • 6 篇 农学
  • 4 篇 经济学
    • 3 篇 应用经济学
    • 2 篇 理论经济学
  • 2 篇 教育学
  • 1 篇 法学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 237 篇 deep autoencoder
  • 29 篇 deep learning
  • 24 篇 feature extracti...
  • 23 篇 anomaly detectio...
  • 9 篇 machine learning
  • 7 篇 transfer learnin...
  • 7 篇 deep neural netw...
  • 7 篇 fault detection
  • 7 篇 unsupervised lea...
  • 6 篇 fault diagnosis
  • 6 篇 dimensionality r...
  • 6 篇 neural networks
  • 6 篇 convolutional ne...
  • 5 篇 reinforcement le...
  • 5 篇 deep neural netw...
  • 4 篇 representation l...
  • 4 篇 random forest
  • 4 篇 graph regulariza...
  • 4 篇 multi-view clust...
  • 4 篇 prediction

机构

  • 4 篇 tampere univ uni...
  • 4 篇 univ chinese aca...
  • 3 篇 jozef stefan ins...
  • 2 篇 univ chinese aca...
  • 2 篇 giet univ sch en...
  • 2 篇 guizhou univ sch...
  • 2 篇 guangxi univ sch...
  • 2 篇 princess nourah ...
  • 2 篇 xi an jiao tong ...
  • 2 篇 northwestern pol...
  • 2 篇 univ sydney busi...
  • 2 篇 tulane univ ctr ...
  • 2 篇 emory univ atlan...
  • 2 篇 sejong univ
  • 2 篇 inst appl math &...
  • 2 篇 univ oviedo elec...
  • 2 篇 hunan normal uni...
  • 2 篇 belarusian state...
  • 2 篇 natl univ def te...
  • 2 篇 tulane univ dept...

作者

  • 4 篇 mishra krishna m...
  • 4 篇 huhtala kalevi j...
  • 3 篇 diaz ignacio
  • 3 篇 loncarevic zvezd...
  • 3 篇 gams andrej
  • 3 篇 krogerus tomi r.
  • 2 篇 wei hong-quan
  • 2 篇 bilodeau guillau...
  • 2 篇 roy pankaj raj
  • 2 篇 lam fan
  • 2 篇 gao junbin
  • 2 篇 hussain tanveer
  • 2 篇 xiang yang
  • 2 篇 pan yu
  • 2 篇 pan zhisong
  • 2 篇 petrovsky alexan...
  • 2 篇 naeini saeed sav...
  • 2 篇 nayak dillip ran...
  • 2 篇 liu liu
  • 2 篇 becker martin

语言

  • 231 篇 英文
  • 4 篇 其他
  • 1 篇 法文
  • 1 篇 朝鲜文
  • 1 篇 中文
检索条件"主题词=Deep autoencoder"
237 条 记 录,以下是161-170 订阅
排序:
A Hybrid deep Ensemble for Speech Disfluency Classification
收藏 引用
CIRCUITS SYSTEMS AND SIGNAL PROCESSING 2021年 第8期40卷 3968-3995页
作者: Pravin, Sheena Christabel Palanivelan, M. Rajalakshmi Engn Coll Dept ECE Chennai Tamil Nadu India
In this paper, a novel Hybrid deep Ensemble (HDE) is proposed for automatic speech disfluency classification on a sparse speech dataset. Categorizations of speech disfluencies for diagnosis of speech disorders have so... 详细信息
来源: 评论
Edge2vec: Edge-based Social Network Embedding
收藏 引用
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA 2020年 第4期14卷 45-45页
作者: Wang, Changping Wang, Chaokun Wang, Zheng Ye, Xiaojun Yu, Philip S. Tsinghua Univ Sch Software Beijing Peoples R China Univ Illinois Dept Comp Sci Chicago IL USA
Graph embedding, also known as network embedding and network representation learning, is a useful technique which helps researchers analyze information networks through embedding a network into a low-dimensional space... 详细信息
来源: 评论
Nonlinear Subspace Clustering via Adaptive Graph Regularized autoencoder
收藏 引用
IEEE ACCESS 2019年 7卷 74122-74133页
作者: Ji, Qiang Sun, Yanfeng Gao, Junbin Hu, Yongli Yin, Baocai Beijing Adv Innovat Ctr Future Internet Technol Beijing 100124 Peoples R China Univ Sydney Business Sch Discipline Business Analyt Sydney NSW 2006 Australia Dalian Univ Technol Fac Elect Informat & Elect Engn Coll Comp Sci & Technol Dalian 116620 Peoples R China
Most existing subspace clustering methods focus on learning a meaningful (e.g., sparse or low-rank) representation of the data. However, they have the following two problems which greatly limit the performance: 1) The... 详细信息
来源: 评论
An Overview of deep Generative Models
收藏 引用
IETE TECHNICAL REVIEW 2015年 第2期32卷 131-139页
作者: Xu, Jungang Li, Hui Zhou, Shilong Univ Chinese Acad Sci Sch Comp & Control Engn Beijing 101408 Peoples R China
As an important category of deep models, deep generative model has attracted more and more attention with the proposal of deep Belief Networks (DBNs) and the fast greedy training algorithm based on restricted Boltzman... 详细信息
来源: 评论
Index tracking through deep latent representation learning
收藏 引用
QUANTITATIVE FINANCE 2020年 第4期20卷 639-652页
作者: Kim, Saejoon Kim, Soong Sogang Univ Dept Comp Sci & Engn 35 Baekbeom Ro Seoul 04107 South Korea
We consider the problem of index tracking whose goal is to construct a portfolio that minimizes the tracking error between the returns of a benchmark index and the tracking portfolio. This problem carries significant ... 详细信息
来源: 评论
A Priori Knowledge-Incorporating Method for the Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Edible Vegetable Oils by Time Resolved Fluorescence
收藏 引用
ANALYTICAL LETTERS 2022年 第8期55卷 1217-1234页
作者: Chen, Hui Feng, Meiqin Li, Jing Lu, Jie Gu, Haiyang Chen, Junhong He, Shihang Qi, Xingpu Chen, Wenjun Chen, Tong Jinling Inst Technol Sch Anim Sci & Food Engn Nanjing Jiangsu Peoples R China Jinling Inst Technol Sch Sci Nanjing Jiangsu Peoples R China Chuzhou Univ Sch Biol Sci & Food Engn Chuzhou Anhui Peoples R China Jiangsu Agrianim Husb Vocat Coll Taizhou Jiangsu Peoples R China Jinling Inst Technol Sch Software Engn Nanjing Jiangsu Peoples R China Guangxi Univ Sci & Technol Sch Biol & Chem Engn 268 Donghuan Ave Liuzhou 545006 Guangxi Peoples R China
A priori knowledge-incorporating method based on time resolved fluorescence was successfully developed for the determination of polycyclic aromatic hydrocarbons in edible vegetable oils. Specifically, fluorescence dec... 详细信息
来源: 评论
Learning of Labeling Room Space for Mobile Robots Based on Visual Motor Experience  26th
Learning of Labeling Room Space for Mobile Robots Based on V...
收藏 引用
26th International Conference on Artificial Neural Networks (ICANN)
作者: Yamada, Tatsuro Ito, Saki Arie, Hiroaki Ogata, Tetsuya Waseda Univ Dept Intermedia Art & Sci Tokyo Japan Waseda Univ Dept Modern Mech Engn Tokyo Japan
A model was developed to allow a mobile robot to label the areas of a typical domestic room, using raw sequential visual and motor data, no explicit information on location was provided, and no maps were constructed. ... 详细信息
来源: 评论
Unsupervised Feature Fusion Combined with Neural Network Applied to UAV Attitude Estimation
Unsupervised Feature Fusion Combined with Neural Network App...
收藏 引用
IEEE International Conference on Robotics and Biomimetics (ROBIO)
作者: Dai, Xin Zhou, Yimin Meng, Shan Wu, Qingtian Shenzhen Univ Coll Informat Engn Shenzhen Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China Shenzhen ACUS Tech Co Inc Shenzhen Peoples R China
In the field of an unmanned aerial vehicle (UAV), the navigation algorithm with high precision and easy implementation is a hot topic of research, and the key of UAV control is to obtain accurate and real-time attitud... 详细信息
来源: 评论
Unsupervised Insider Detection Through Neural Feature Learning and Model Optimisation  13th
Unsupervised Insider Detection Through Neural Feature Learni...
收藏 引用
13th International Conference on Network and System Security (NSS)
作者: Liu, Liu Chen, Chao Zhang, Jun De Vel, Olivier Xiang, Yang Swinburne Univ Technol Sch Software & Elect Engn Hawthorn Vic 3122 Australia Dept Def Def Sci & Technol Grp Edinburgh SA 5111 Australia
The insider threat is a significant security concern for both organizations and government sectors. Traditional machine learning-based insider threat detection approaches usually rely on domain focused feature enginee... 详细信息
来源: 评论
Generalization Based Database Acquisition for Robot Learning in Reduced Space
Generalization Based Database Acquisition for Robot Learning...
收藏 引用
29th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD)
作者: Loncarevic, Zvezdan Pahic, Rok Simonic, Mihael Ude, Ales Gams, Andrej Jozef Stefan Inst Jamova Cesta 39 Ljubljana 1000 Slovenia
In order to increase the autonomy of the modern, high complexity robots with multiple degrees of freedom, it is necessary for them to be able to learn and adapt their skills, for example, using reinforcement learning ... 详细信息
来源: 评论