咨询与建议

限定检索结果

文献类型

  • 154 篇 期刊文献
  • 83 篇 会议

馆藏范围

  • 237 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 146 篇 计算机科学与技术...
    • 80 篇 电气工程
    • 25 篇 控制科学与工程
    • 25 篇 软件工程
    • 23 篇 信息与通信工程
    • 14 篇 仪器科学与技术
    • 12 篇 机械工程
    • 9 篇 电子科学与技术(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 安全科学与工程
    • 3 篇 动力工程及工程热...
    • 2 篇 光学工程
    • 2 篇 建筑学
    • 2 篇 交通运输工程
    • 2 篇 船舶与海洋工程
  • 44 篇 理学
    • 19 篇 生物学
    • 10 篇 物理学
    • 9 篇 数学
    • 9 篇 化学
    • 3 篇 地球物理学
    • 2 篇 地质学
  • 26 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 4 篇 特种医学
  • 26 篇 管理学
    • 23 篇 管理科学与工程(可...
  • 6 篇 农学
  • 4 篇 经济学
    • 3 篇 应用经济学
    • 2 篇 理论经济学
  • 2 篇 教育学
  • 1 篇 法学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 237 篇 deep autoencoder
  • 29 篇 deep learning
  • 24 篇 feature extracti...
  • 23 篇 anomaly detectio...
  • 9 篇 machine learning
  • 7 篇 transfer learnin...
  • 7 篇 deep neural netw...
  • 7 篇 fault detection
  • 7 篇 unsupervised lea...
  • 6 篇 fault diagnosis
  • 6 篇 dimensionality r...
  • 6 篇 neural networks
  • 6 篇 convolutional ne...
  • 5 篇 reinforcement le...
  • 5 篇 deep neural netw...
  • 4 篇 representation l...
  • 4 篇 random forest
  • 4 篇 graph regulariza...
  • 4 篇 multi-view clust...
  • 4 篇 prediction

机构

  • 4 篇 tampere univ uni...
  • 4 篇 univ chinese aca...
  • 3 篇 jozef stefan ins...
  • 2 篇 univ chinese aca...
  • 2 篇 giet univ sch en...
  • 2 篇 guizhou univ sch...
  • 2 篇 guangxi univ sch...
  • 2 篇 princess nourah ...
  • 2 篇 xi an jiao tong ...
  • 2 篇 northwestern pol...
  • 2 篇 univ sydney busi...
  • 2 篇 tulane univ ctr ...
  • 2 篇 emory univ atlan...
  • 2 篇 sejong univ
  • 2 篇 inst appl math &...
  • 2 篇 univ oviedo elec...
  • 2 篇 hunan normal uni...
  • 2 篇 belarusian state...
  • 2 篇 natl univ def te...
  • 2 篇 tulane univ dept...

作者

  • 4 篇 mishra krishna m...
  • 4 篇 huhtala kalevi j...
  • 3 篇 diaz ignacio
  • 3 篇 loncarevic zvezd...
  • 3 篇 gams andrej
  • 3 篇 krogerus tomi r.
  • 2 篇 wei hong-quan
  • 2 篇 bilodeau guillau...
  • 2 篇 roy pankaj raj
  • 2 篇 lam fan
  • 2 篇 gao junbin
  • 2 篇 hussain tanveer
  • 2 篇 xiang yang
  • 2 篇 pan yu
  • 2 篇 pan zhisong
  • 2 篇 petrovsky alexan...
  • 2 篇 naeini saeed sav...
  • 2 篇 nayak dillip ran...
  • 2 篇 liu liu
  • 2 篇 becker martin

语言

  • 231 篇 英文
  • 4 篇 其他
  • 1 篇 法文
  • 1 篇 朝鲜文
  • 1 篇 中文
检索条件"主题词=Deep autoencoder"
237 条 记 录,以下是11-20 订阅
排序:
Wavelet-based extended morphological profile and deep autoencoder for hyperspectral image classification
收藏 引用
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING 2018年 第3期16卷
作者: Luo, Huiwu Tani, Yuan Yan Biuk-Aghai, Robert P. Yang, Xu Yang, Lina Wang, Yi Univ Macau Fac Sci & Technol Macau 999078 Peoples R China Guangxi Univ Sch Comp Elect & Informat Nanning 530004 Peoples R China Chongqing Univ Coll Comp Sci Chongqing 400030 Peoples R China
In this paper, we propose a novel scheme to learn high-level representative features and conduct classification for hyperspectral image (HSI) data in an automatic fashion. The proposed method is a collaboration of a w... 详细信息
来源: 评论
A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
收藏 引用
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2017年 95卷 187-204页
作者: Shao Haidong Jiang Hongkai Zhao Huiwei Wang Fuan Northwestern Polytech Univ Sch Aeronaut Xian 710072 Peoples R China
The operation conditions of the rotating machinery are always complex and variable, which makes it difficult to automatically and effectively capture the useful fault features from the measured vibration signals, and ... 详细信息
来源: 评论
Detection and classification of brain abnormality by a novel hybrid EfficientNet-deep autoencoder (EF-DA) CNN model from MRI brain images in smart health diagnosis
收藏 引用
INTERNATIONAL JOURNAL OF NANOTECHNOLOGY 2023年 第5-10期20卷 696-718页
作者: Nayak, Dillip Ranjan Padhy, Neelamadhab Singh, Ashish Mallick, Pradeep Kumar GIET Univ Sch Engn & Technol CSE Gunupur 765022 Odisha India Deemed Univ Kalinga Inst Ind Technol Sch Comp Engn Bhubaneswar 751024 India
This paper presents the novel smart hybrid EfficientNet-deep autoencoder (EF-DA) deep Neural Network model to classify brain images. This is the succession of modified EfficientNetB0 with a deep autoencoder to detect ... 详细信息
来源: 评论
Classification of Motor Imagery EEG Signals Based on deep autoencoder and Convolutional Neural Network Approach
收藏 引用
IEEE ACCESS 2022年 10卷 48071-48081页
作者: Hwaidi, Jamal F. Chen, Thomas M. Univ London Dept Elect & Elect Engn London EC1V 0HB England
The technology of the brain-computer interface (BCI) employs electroencephalogram (EEG) signals to establish direct interaction between the human body and its surroundings with promising applications in medical rehabi... 详细信息
来源: 评论
Image encryption based on logistic chaotic systems and deep autoencoder
收藏 引用
PATTERN RECOGNITION LETTERS 2022年 153卷 59-66页
作者: Sang, Yongpeng Sang, Jun Alam, Mohammad S. Huazhong Univ Sci & Technol Sch Cyber Sci & Engn Wuhan Peoples R China Chongqing Univ Sch Big Data & Software Engn Chongqing Peoples R China Texas A&M Univ Kingsville Frank H Dotterweich Coll Engn Kingsville TX USA
In this paper, we propose a novel image encryption method based on logistic chaotic systems and deep autoencoder. In the encryption phase, first, the plaintext image is randomly scrambled by a logistic chaotic system.... 详细信息
来源: 评论
TDEC: Evidential Clustering Based on Transfer Learning and deep autoencoder
收藏 引用
IEEE TRANSACTIONS ON FUZZY SYSTEMS 2024年 第10期32卷 5585-5597页
作者: Jiao, Lianmeng Wang, Feng Liu, Zhun-Ga Pan, Quan Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China
Evidential clustering is a promising clustering framework using Dempster-Shafer belief function theory to model uncertain data. However, evidential clustering needs to estimate more parameters compared with other clus... 详细信息
来源: 评论
Community-aware dynamic network embedding by using deep autoencoder
收藏 引用
INFORMATION SCIENCES 2020年 第0期519卷 22-42页
作者: Ma, Lijia Zhang, Yutao Li, Jianqiang Lin, Qiuzhen Bao, Qing Wang, Shanfeng Gong, Maoguo Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Hangzhou Elect Sci & Technol Univ Sch Comp Sci Hangzhou 310018 Peoples R China Xidian Univ Sch Elect Engn Key Lab Intelligent Percept & Image Understanding Minist Educ 2 South TaiBai Rd Xian 710071 Peoples R China
Network embedding has recently attracted lots of attention due to its wide applications on graph tasks such as link prediction, network reconstruction, node stabilization, and community stabilization, which aims to le... 详细信息
来源: 评论
Semantics-enhanced supervised deep autoencoder for depth image-based 3D model retrieval
收藏 引用
PATTERN RECOGNITION LETTERS 2019年 125卷 806-812页
作者: Siddiqua, Ayesha Fan, Guoliang Oklahoma State Univ Sch Elect & Comp Engn Stillwater OK 74078 USA
Increased accuracy and affordability of depth sensors such as Kinect has created a great depth-data source for various 3D oriented applications. Specifically, 3D model retrieval is attracting attention in the field of... 详细信息
来源: 评论
CDDA: color-dominant deep autoencoder for faster and efficient bilateral image filtering
收藏 引用
SIGNAL IMAGE AND VIDEO PROCESSING 2021年 第6期15卷 1189-1195页
作者: Das, Apurba Shylaja, S. S. PES Univ Dept Comp Sci & Engn Bangalore Karnataka India
Nonlinear processing of high-dimensional data is quite common in image filtering algorithms. Bilateral, joint bilateral, and non-local means filters are the examples of the same. Real-time implementation of high-dimen... 详细信息
来源: 评论
Joint network embedding of network structure and node attributes via deep autoencoder
收藏 引用
NEUROCOMPUTING 2022年 468卷 198-210页
作者: Pan, Yu Zou, Junhua Qiu, Junyang Wang, Shuaihui Hu, Guyu Pan, Zhisong Army Engn Univ Inst Command & Control Engn Nanjing Peoples R China Jiangnan Inst Comp Technol Math Engn & Adv Comp Wuxi Jiangsu Peoples R China
Network embedding aims to learn a low-dimensional vector for each node in networks, which is effective in a variety of applications such as network reconstruction and community detection. However, the majority of the ... 详细信息
来源: 评论