咨询与建议

限定检索结果

文献类型

  • 154 篇 期刊文献
  • 83 篇 会议

馆藏范围

  • 237 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 146 篇 计算机科学与技术...
    • 80 篇 电气工程
    • 25 篇 控制科学与工程
    • 25 篇 软件工程
    • 23 篇 信息与通信工程
    • 14 篇 仪器科学与技术
    • 12 篇 机械工程
    • 9 篇 电子科学与技术(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 安全科学与工程
    • 3 篇 动力工程及工程热...
    • 2 篇 光学工程
    • 2 篇 建筑学
    • 2 篇 交通运输工程
    • 2 篇 船舶与海洋工程
  • 44 篇 理学
    • 19 篇 生物学
    • 10 篇 物理学
    • 9 篇 数学
    • 9 篇 化学
    • 3 篇 地球物理学
    • 2 篇 地质学
  • 26 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 4 篇 特种医学
  • 26 篇 管理学
    • 23 篇 管理科学与工程(可...
  • 6 篇 农学
  • 4 篇 经济学
    • 3 篇 应用经济学
    • 2 篇 理论经济学
  • 2 篇 教育学
  • 1 篇 法学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 237 篇 deep autoencoder
  • 29 篇 deep learning
  • 24 篇 feature extracti...
  • 23 篇 anomaly detectio...
  • 9 篇 machine learning
  • 7 篇 transfer learnin...
  • 7 篇 deep neural netw...
  • 7 篇 fault detection
  • 7 篇 unsupervised lea...
  • 6 篇 fault diagnosis
  • 6 篇 dimensionality r...
  • 6 篇 neural networks
  • 6 篇 convolutional ne...
  • 5 篇 reinforcement le...
  • 5 篇 deep neural netw...
  • 4 篇 representation l...
  • 4 篇 random forest
  • 4 篇 graph regulariza...
  • 4 篇 multi-view clust...
  • 4 篇 prediction

机构

  • 4 篇 tampere univ uni...
  • 4 篇 univ chinese aca...
  • 3 篇 jozef stefan ins...
  • 2 篇 univ chinese aca...
  • 2 篇 giet univ sch en...
  • 2 篇 guizhou univ sch...
  • 2 篇 guangxi univ sch...
  • 2 篇 princess nourah ...
  • 2 篇 xi an jiao tong ...
  • 2 篇 northwestern pol...
  • 2 篇 univ sydney busi...
  • 2 篇 tulane univ ctr ...
  • 2 篇 emory univ atlan...
  • 2 篇 sejong univ
  • 2 篇 inst appl math &...
  • 2 篇 univ oviedo elec...
  • 2 篇 hunan normal uni...
  • 2 篇 belarusian state...
  • 2 篇 natl univ def te...
  • 2 篇 tulane univ dept...

作者

  • 4 篇 mishra krishna m...
  • 4 篇 huhtala kalevi j...
  • 3 篇 diaz ignacio
  • 3 篇 loncarevic zvezd...
  • 3 篇 gams andrej
  • 3 篇 krogerus tomi r.
  • 2 篇 wei hong-quan
  • 2 篇 bilodeau guillau...
  • 2 篇 roy pankaj raj
  • 2 篇 lam fan
  • 2 篇 gao junbin
  • 2 篇 hussain tanveer
  • 2 篇 xiang yang
  • 2 篇 pan yu
  • 2 篇 pan zhisong
  • 2 篇 petrovsky alexan...
  • 2 篇 naeini saeed sav...
  • 2 篇 nayak dillip ran...
  • 2 篇 liu liu
  • 2 篇 becker martin

语言

  • 231 篇 英文
  • 4 篇 其他
  • 1 篇 法文
  • 1 篇 朝鲜文
  • 1 篇 中文
检索条件"主题词=Deep autoencoder"
237 条 记 录,以下是41-50 订阅
排序:
Reduction of Trajectory Encoding Data Using a deep autoencoder Network: Robotic Throwing  28th
Reduction of Trajectory Encoding Data Using a Deep Autoencod...
收藏 引用
28th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD)
作者: Loncarevic, Zvezdan Pahic, Rok Simonic, Mihael Ude, Ales Gams, Andrej Jozef Stefan Inst Jamova Cesta 39 Ljubljana 1000 Slovenia
Autonomous learning and adaptation of robotic trajectories by complex robots in unstructured environments, for example with the use of reinforcement learning, very quickly encounters problems where the dimensionality ... 详细信息
来源: 评论
deep autoencoder with localized stochastic sensitivity for short-term load forecasting
收藏 引用
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS 2021年 130卷 106954-106954页
作者: Wang, Ting Lai, Chun Sing Ng, Wing W. Y. Pan, Keda Zhang, Mingyang Vaccaro, Alfredo Lai, Loi Lei South China Univ Technol Guangdong Prov Key Lab Computat Intelligence & Cy Sch Comp Sci & Engn Guangzhou 510630 Peoples R China Brunel Univ London Brunel Interdisciplinary Power Syst Res Ctr London UB8 3PH England Guangdong Univ Technol Dept Elect Engn Sch Automat Guangzhou 510006 Peoples R China Univ Sannio Engn Dept I-82100 Benevento Italy
This paper presents a short-term electric load forecasting model based on deep autoencoder with localized stochastic sensitivity (D-LiSSA). D-LiSSA can learn informative hidden representations from unseen samples by m... 详细信息
来源: 评论
Abnormal Event Detection based on deep autoencoder fusing optical flow  36
Abnormal Event Detection based on Deep Autoencoder fusing op...
收藏 引用
第36届中国控制会议
作者: Meina Qiao Tian Wang Jiakun Li Ce Li Zhiwei Lin Hichem Snoussi School of Automation Science and Electrical Engineering Beihang University College of Electrical and Information Engineering Lanzhou University of Technology School of Computing Ulster University Institute Charles Delaunay-LM2S-UMR STMR 6279 CNRS University of Technology of Troyes
As an important research topic in computer vision,abnormal detection has gained more and more *** order to detect abnormal events effectively,we propose a novel method using optical flow and deep *** our model,optical... 详细信息
来源: 评论
Fault Detection of Elevator System using deep autoencoder Feature Extraction for Acceleration Signals  11
Fault Detection of Elevator System using Deep Autoencoder Fe...
收藏 引用
11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K) / 11th International Conference on Knowledge Engineering and Ontology Development (KEOD)
作者: Mishra, Krishna Mohan Huhtala, Kalevi J. Tampere Univ Unit Automat Technol & Mech Engn Tampere Finland
In this research, we propose a generic deep autoencoder model for automatic calculation of highly informative deep features from the elevator time series data. Random forest algorithm is used for fault detection based... 详细信息
来源: 评论
Profile Extraction and deep autoencoder Feature Extraction for Elevator Fault Detection  16
Profile Extraction and Deep Autoencoder Feature Extraction f...
收藏 引用
16th International Joint Conference on E-Business and Telecommunications (ICETE)
作者: Mishra, Krishna Mohan Krogerus, Tomi R. Huhtala, Kalevi J. Tampere Univ Unit Automat Technol & Mech Engn Tampere Finland
In this paper, we propose a new algorithm for data extraction from time series signal data, and furthermore automatic calculation of highly informative deep features to be used in fault detection. In data extraction e... 详细信息
来源: 评论
SHAPE RETRIEVAL USING deep autoencoder LEARNING REPRESENTATION  13
SHAPE RETRIEVAL USING DEEP AUTOENCODER LEARNING REPRESENTATI...
收藏 引用
13th IEEE International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)
作者: Xu, Guoqing Fang, Weiwei Nanyang Inst Technol Sch Comp & Informat Engn Nanyang 473004 Peoples R China
deep learning has shown to be very effective in variety of applications including image classification and object recognition. In this paper we use deep autoencoder for compact shape representation learning and image ... 详细信息
来源: 评论
Training deep autoencoder via VLC-Genetic Algorithm  24th
Training Deep Autoencoder via VLC-Genetic Algorithm
收藏 引用
24th International Conference on Neural Information Processing (ICONIP)
作者: Khan, Qazi Sami Ullah Li, Jianwu Zhao, Shuyang Beijing Inst Technol Sch Comp Sci & Technol Beijing Key Lab Intelligent Informat Technol Beijing Peoples R China
Recently, both supervised and unsupervised deep learning techniques have accomplished notable results in various fields. However neural networks with back-propagation are liable to trapping at local minima. Genetic al... 详细信息
来源: 评论
ECG-based Biometrics using a deep autoencoder for Feature Learning An Empirical Study on Transferability  6
ECG-based Biometrics using a Deep Autoencoder for Feature Le...
收藏 引用
6th International Conference on Pattern Recognition Applications and Methods (ICPRAM)
作者: Eduardo, Afonso Aidos, Helena Fred, Ana Univ Lisbon Inst Super Tecn Inst Telecomunicacoes Lisbon Portugal
Biometric identification is the task of recognizing an individual using biological or behavioral traits and, recently, electrocardiogram has emerged as a prominent trait. In addition, deep learning is a fast-paced res... 详细信息
来源: 评论
Fault Diagnosis Method for Mobile Energy Storage Cabin Based on Digital Twin Technology and deep autoencoder  3
Fault Diagnosis Method for Mobile Energy Storage Cabin Based...
收藏 引用
3rd Asian Conference on Frontiers of Power and Energy
作者: Liang, Hongfu Luo, Tian Zhang, Xuan Chen, Jun Ding, Bo State Grid Chongqing Elect Power Co Shinan Power Supply Branch Chongqing Peoples R China Chongqing Guanghui Power Supply Serv Co Ltd Shinan Branch Chongqing Peoples R China Beijing Zhongdian Puhua Informat Technol Co Ltd Chongqing Business Dept Xian Branch Chongqing Peoples R China
A fault diagnosis method for mobile energy storage cabin based on digital twin technology and deep autoencoder is proposed to address the problems of time-consuming, labor-intensive, and low accuracy in traditional fa... 详细信息
来源: 评论
A deep autoencoder and RNN Model for Indoor Localization with Variable Propagation Loss  17
A Deep Autoencoder and RNN Model for Indoor Localization wit...
收藏 引用
17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)
作者: Espindola, Allan Viegas, Eduardo K. Traleski, Andre Pellenz, Marcelo E. Santin, Altair O. Pontificia Univ Catolica Parana Grad Program Comp Sci Curitiba Parana Brazil
Current machine learning techniques for indoor localization of wireless devices assume a single wireless propagation loss setting, making them unfeasible for reliable production deployment. This paper proposes a new i... 详细信息
来源: 评论