咨询与建议

限定检索结果

文献类型

  • 16 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 24 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 工学
    • 13 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 信息与通信工程
    • 1 篇 测绘科学与技术
    • 1 篇 石油与天然气工程
    • 1 篇 核科学与技术
  • 6 篇 理学
    • 3 篇 生物学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 地理学
  • 4 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 24 篇 deep generative ...
  • 3 篇 variational auto...
  • 3 篇 deep learning
  • 3 篇 artificial intel...
  • 2 篇 deep generative ...
  • 2 篇 generative adver...
  • 2 篇 synthetic data g...
  • 2 篇 conditional gans
  • 2 篇 data models
  • 2 篇 training
  • 1 篇 generative adver...
  • 1 篇 constraint disco...
  • 1 篇 generative desig...
  • 1 篇 design space
  • 1 篇 interferometric ...
  • 1 篇 free energy
  • 1 篇 regulatory netwo...
  • 1 篇 responsible arti...
  • 1 篇 open-source lice...
  • 1 篇 multivariate tim...

机构

  • 1 篇 chinese acad sci...
  • 1 篇 univ grenoble al...
  • 1 篇 univ bucharest d...
  • 1 篇 nanchang univ de...
  • 1 篇 department of co...
  • 1 篇 north carolina s...
  • 1 篇 univ chicago dep...
  • 1 篇 pse speed co sky...
  • 1 篇 rhein friedrich ...
  • 1 篇 orange
  • 1 篇 king saud univ c...
  • 1 篇 department of me...
  • 1 篇 samsung mountain...
  • 1 篇 univ edinburgh e...
  • 1 篇 carleton univ ot...
  • 1 篇 computat design ...
  • 1 篇 univ oklahoma sc...
  • 1 篇 univ chicago pri...
  • 1 篇 univ kansas dept...
  • 1 篇 rte r&d immeuble...

作者

  • 2 篇 xu kai
  • 2 篇 marina mahesh k.
  • 2 篇 benn howard
  • 1 篇 wu wenming
  • 1 篇 ergen can
  • 1 篇 yang fei
  • 1 篇 bucher martin ju...
  • 1 篇 tu zongjiang
  • 1 篇 chen ruimin
  • 1 篇 sun jiahui
  • 1 篇 zhou zhongrun
  • 1 篇 zheng liping
  • 1 篇 wang yuhao
  • 1 篇 das payel
  • 1 篇 sun chuanhao
  • 1 篇 luo bo
  • 1 篇 praljak niksa
  • 1 篇 wu sai
  • 1 篇 cheng irene
  • 1 篇 ramamurthy karth...

语言

  • 23 篇 英文
  • 1 篇 其他
检索条件"主题词=Deep generative modeling"
24 条 记 录,以下是1-10 订阅
排序:
GANInSAR: deep generative modeling for Large-Scale InSAR Signal Simulation
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2024年 17卷 5303-5316页
作者: Zhou, Zhongrun Sun, Xinyao Yang, Fei Wang, Zheng Goldsbury, Ryan Cheng, Irene Univ Alberta Comp Sci Edmonton AB T6G 2R3 Canada 3V Geomat Inc RnD Vancouver BC V5Y 0M6 Canada
Interferometric synthetic aperture radar (InSAR) technology is widely used to create digital elevation models and measure dynamics on the Earth's surface, including monitoring ground displacements. The lack of or ... 详细信息
来源: 评论
deep generative modeling-based data augmentation with demonstration using the BFBT benchmark void fraction datasets
收藏 引用
NUCLEAR ENGINEERING AND DESIGN 2023年 415卷
作者: Alsafadi, Farah Wu, Xu North Carolina State Univ Dept Nucl Engn Burlington Engn Labs 2500 Stinson Dr Raleigh NC 27695 USA
deep learning (DL) has achieved remarkable successes in many disciplines such as computer vision and natural language processing due to the availability of "big data". However, such success cannot be easily ... 详细信息
来源: 评论
IceBerg: deep generative modeling for Constraint Discovery and Anomaly Detection  20
IceBerg: Deep Generative Modeling for Constraint Discovery a...
收藏 引用
20th IEEE Int Symposium on Parallel and Distributed Processing with Applicat / 15th IEEE Int Conf on Social Comp and Networking / 12th IEEE Int Conf on Big Data and Cloud Comp / 12th IEEE Int Conf on Sustainable Comp and Commun
作者: Hu, Wentao Jiang, Dawei Wu, Sai Chen, Ke Chen, Gang Zhejiang Univ Key Lab Big Data Intelligent Comp Zhejiang Prov Hangzhou Zhejiang Peoples R China
Automatic constraint discovery from a relational database is beneficial for domain experts in fraud detection and intelligent auditing. Its objective is to discover a set of inherent constraints underlying the databas... 详细信息
来源: 评论
Performance-Based generative Design for Parametric modeling of Engineering Structures Using deep Conditional generative Models
收藏 引用
AUTOMATION IN CONSTRUCTION 2023年 156卷
作者: Bucher, Martin Juan Jose Kraus, Michael Anton Rust, Romana Tang, Siyu Swiss Fed Inst Technol Stefano Franscini Pl CH-8093 Zurich Switzerland
Parametric modeling, generative Design, and Performance-Based Design have gained increasing attention in the AEC field as a way to create a wide range of design variants while focusing on performance attributes rather... 详细信息
来源: 评论
ZEB2 is a master switch controlling the tumor-associated macrophage program
收藏 引用
Cancer Cell 2025年
作者: Sheban, Fadi Phan, Truong San Xie, Ken Ingelfinger, Florian Gur, Chamutal Shapir Itai, Yuval Blecher-Gonen, Ronnie Yu, Chunsong Avellino, Roberto Chalan, Paulina Freitag, Kiara Yofe, Ido Yutkin, Vladimir Boyeau, Pierre Ergen, Can Hong, Justin Mazuz, Kfir Liu, Yuxiao Chen, Kangming Dahan, Rony Kortylewski, Marcin Yosef, Nir Weiner, Assaf Amit, Ido Department of Systems Immunology Weizmann Institute of Science Rehovot 7610001 Israel Department of Medicine Hadassah Medical Center Faculty of Medicine Hebrew University of Jerusalem Jerusalem Israel The Crown Genomics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine Weizmann Institute of Science Rehovot 7610001 Israel Department of Immuno-Oncology Beckman Research Institute City of Hope Los Angeles CA United States Department of Urology Hadassah Medical Center Faculty of Medicine Hebrew University of Jerusalem Jerusalem Israel Department of Electrical Engineering and Computer Sciences University of California Berkeley Berkeley CA United States Center for Computational Biology University of California Berkeley Berkeley CA United States Department of Computer Science Columbia University New York NY United States Nanjing GenScript Biotech Co. Ltd Jiangning Science Park Jiangsu Nanjing 211100 China
Tumor-associated macrophages (TAMs) are key mediators of tumor immune evasion. However, their regulatory circuits and checkpoints are partially understood. Here, we generated a TAM regulatory network by integrating hu... 详细信息
来源: 评论
deep generative Methods for Producing Forecast Trajectories in Power Systems  20
Deep Generative Methods for Producing Forecast Trajectories ...
收藏 引用
20th International Conference on the European Energy Market (EEM)
作者: Weill, Nathan Dumas, Jonathan RTE R&D Immeuble Window 7CPl Dome F-92073 La Def France
With the expansion of renewables in the electricity mix, power grid variability will increase;hence, the system needs to be robust to guarantee its security. To anticipate the design of new tools and processes, Transm... 详细信息
来源: 评论
AUGMENTING MOLECULAR deep generative MODELS WITH TOPOLOGICAL DATA ANALYSIS REPRESENTATIONS  47
AUGMENTING MOLECULAR DEEP GENERATIVE MODELS WITH TOPOLOGICAL...
收藏 引用
47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Schiff, Yair Chenthamarakshan, Vijil Hoffman, Samuel C. Ramamurthy, Karthikeyan Natesan Das, Payel IBM Res TJ Watson Res Ctr Yorktown Hts NY 10598 USA
deep generative models have emerged as a powerful tool for learning useful molecular representations and designing novel molecules with desired properties, with applications in drug discovery and material design. Howe... 详细信息
来源: 评论
deep learning and knowledge-based methods for computer-aided molecular design-toward a unified approach: State-of-the-art and future directions
收藏 引用
COMPUTERS & CHEMICAL ENGINEERING 2020年 141卷 107005-107005页
作者: Alshehri, Abdulelah S. Gani, Rafiqul You, Fengqi Cornell Univ Robert Frederick Smith Sch Chem & Biomol Engn Ithaca NY 14853 USA King Saud Univ Coll Engn Dept Chem Engn POB 800 Riyadh 11421 Saudi Arabia PSE Speed Co Skyttemosen 6 DK-3450 Allerod Denmark
The optimal design of compounds through manipulating properties at the molecular level is often the key to considerable scientific advances and improved process systems performance. This paper highlights key trends, c... 详细信息
来源: 评论
Diffusion Models in Vision: A Survey
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023年 第9期45卷 10850-10869页
作者: Croitoru, Florinel-Alin Hondru, Vlad Ionescu, Radu Tudor Shah, Mubarak Univ Bucharest Dept Comp Sci Bucharest 030018 Romania Univ Cent Florida Ctr Res Comp Vis CRCV Dept Comp Sci Orlando FL 32816 USA
Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two s... 详细信息
来源: 评论
ProtWave-VAE: Integrating Autoregressive Sampling with Latent-Based Inference for Data-Driven Protein Design
收藏 引用
ACS SYNTHETIC BIOLOGY 2023年 第12期12卷 3544-3561页
作者: Praljak, Niksa Lian, Xinran Ranganathan, Rama Ferguson, Andrew L. Univ Chicago Grad Program Biophys Sci Chicago IL 60637 USA Univ Chicago Dept Chem Chicago IL 60637 USA Univ Chicago Ctr Phys Evolving Syst Chicago IL 60637 USA Univ Chicago Dept Biochem & Mol Biol Chicago IL 60637 USA Univ Chicago Pritzker Sch Mol Engn Chicago IL 60637 USA
deep generative models (DGMs) have shown great success in the understanding and data-driven design of proteins. Variational autoencoders (VAEs) are a popular DGM approach that can learn the correlated patterns of amin... 详细信息
来源: 评论