咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=Deep learning in robotics and automation"
221 条 记 录,以下是101-110 订阅
排序:
GFPNet: A deep Network for learning Shape Completion in Generic Fitted Primitives
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第3期5卷 4493-4500页
作者: Cocias, Tiberiu Razvant, Alexandru Grigorescu, Sorin Transilvania Univ Brasov Elektrobit Automot & Robot Vis & Control Lab Brasov 500036 Romania
In this letter, we propose an object reconstruction apparatus that uses the so-called Generic Primitives (GP) to complete shapes. A GP is a 3D point cloud depicting a generalized shape of a class of objects. To recons... 详细信息
来源: 评论
Low to High Dimensional Modality Hallucination Using Aggregated Fields of View
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1983-1990页
作者: Gunasekar, Kausic Qiu, Qiang Yang, Yezhou Arizona State Univ Tempe AZ 85281 USA Duke Univ Durham NC 27708 USA
Real-world robotics systems deal with data from a multitude of modalities, especially for tasks such as navigation and recognition. The performance of those systems can drastically degrade when one or more modalities ... 详细信息
来源: 评论
CorsNet: 3D Point Cloud Registration by deep Neural Network
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第3期5卷 3960-3966页
作者: Kurobe, Akiyoshi Sekikawa, Yusuke Ishikawa, Kohta Saito, Hideo Keio Univ Dept Sci & Technol Yokohama Kanagawa 2238522 Japan Denso IT Lab Inc Tokyo 1500002 Japan
Point cloud registration is a key problem for robotics and computer vision communities. This represents estimating a rigid transform which aligns one point cloud to another. Iterative closest point (ICP) is a well-kno... 详细信息
来源: 评论
Localization of Inspection Device Along Belt Conveyors With Multiple Branches Using deep Neural Networks
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 2921-2928页
作者: Yasutomi, Andre Yuji Enoki, Hideo Hitachi Ltd Robot Res Dept Ctr Technol Innovat Mech Engn Res & Dev Grp Hitachinaka Ibaraki 3120034 Japan
Regular inspections of belt conveyors are required to prevent the damage of transported objects. Nevertheless, inspections can be troublesome for belt conveyors composed of a plurality of belt lines with multiple bran... 详细信息
来源: 评论
learning to Assemble: Estimating 6D Poses for Robotic Object-Object Manipulation
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1159-1166页
作者: Stevsic, Stefan Christen, Sammy Hilliges, Otmar Swiss Fed Inst Technol Dept Comp Sci Adv Interact Technol Lab CH-8092 Zurich Switzerland
In this letter we propose a robotic vision task with the goal of enabling robots to execute complex assembly tasks in unstructured environments using a camera as the primary sensing device. We formulate the task as an... 详细信息
来源: 评论
A Multimodal Target-Source Classifier With Attention Branches to Understand Ambiguous Instructions for Fetching Daily Objects
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 532-539页
作者: Magassouba, Aly Sugiura, Komei Kawai, Hisashi Natl Inst Informat & Commun Technol 3-5 Hikaridai Kyoto 6190289 Japan
In this study, we focus on multimodal language understanding for fetching instructions in the domestic service robots context. This task consists of predicting a target object, as instructed by the user, given an imag... 详细信息
来源: 评论
Robot Navigation in Crowds by Graph Convolutional Networks With Attention Learned From Human Gaze
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 2754-2761页
作者: Chen, Yuying Liu, Congcong Shi, Bertram E. Liu, Ming Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China
Safe and efficient crowd navigation for mobile robot is a crucial yet challenging task. Previous work has shown the power of deep reinforcement learning frameworks to train efficient policies. However, their performan... 详细信息
来源: 评论
Motor Synergy Development in High-Performing deep Reinforcement learning Algorithms
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1271-1278页
作者: Chai, Jiazheng Hayashibe, Mitsuhiro Tohoku Univ Grad Sch Engn Dept Robot Neurorobot Lab Sendai Miyagi 9808579 Japan
As human motor learning is hypothesized to use the motor synergy concept, we investigate if this concept could also be observed in deep reinforcement learning for robotics. From this point of view, we carried out a jo... 详细信息
来源: 评论
learning Densities in Feature Space for Reliable Segmentation of Indoor Scenes
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1032-1038页
作者: Marchal, Nicolas Moraldo, Charlotte Blum, Hermann Siegwart, Roland Cadena, Cesar Gawel, Abel Swiss Fed Inst Technol Autonomous Syst Lab CH-8092 Zurich Switzerland
deep learning has enabled remarkable advances in scene understanding, particularly in semantic segmentation tasks. Yet, current state of the art approaches are limited to a closed set of classes, and fail when facing ... 详细信息
来源: 评论
Real-Time Soft Body 3D Proprioception via deep Vision-Based Sensing
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 3382-3389页
作者: Wang, Ruoyu Wang, Shiheng Du, Songyu Xiao, Erdong Yuan, Wenzhen Feng, Chen NYU Tandon Sch Engn Brooklyn NY 11201 USA Carnegie Mellon Univ Inst Robot Pittsburgh PA 15213 USA
Soft bodies made from flexible and deformable materials are popular in many robotics applications, but their proprioceptive sensing has been a long-standing challenge. In other words, there has hardly been a method to... 详细信息
来源: 评论