咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=Deep learning in robotics and automation"
221 条 记 录,以下是161-170 订阅
排序:
HMFP-DBRNN: Real-Time Hand Motion Filtering and Prediction via deep Bidirectional RNN
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1061-1068页
作者: Shahtalebi, Soroosh Atashzar, Seyed Farokh Patel, Rajni V. Mohammadi, Arash Concordia Univ Concordia Inst Informat Syst Engn Montreal PQ H3G 1M8 Canada Imperial Coll London Dept Bioengn London SW7 2AZ England Univ Western Ontario Dept Elect & Comp Engn London ON N6A 3K7 Canada
Pathological hand tremor (PHT) is among the most common movement symptoms of several neurological disorders including Parkinson's disease and essential tremor. Extracting PHT is of paramount importance in several ... 详细信息
来源: 评论
Weakly Supervised Fruit Counting for Yield Estimation Using Spatial Consistency
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第3期4卷 2348-2355页
作者: Bellocchio, Enrico Ciarfuglia, Thomas A. Costante, Gabriele Valigi, Paolo Univ Perugia Dept Engn I-06125 Perugia Italy
Fruit counting is a fundamental component for yield estimation applications. Most of the existing approaches address this problem by relying on fruit models (i.e., by using object detectors) or by explicitly learning ... 详细信息
来源: 评论
Real-Time Instrument Segmentation in Robotic Surgery Using Auxiliary Supervised deep Adversarial learning
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 2188-2195页
作者: Islam, Mobarakol Atputharuban, Daniel Anojan Ramesh, Ravikiran Ren, Hongliang Natl Univ Singapore NUS Grad Sch Integrat Sci & Engn Singapore 117581 Singapore Natl Univ Singapore Dept Biomed Engn Singapore 117581 Singapore Univ Moratuwa Dept Elect & Telecommun Moratuwa 10400 Sri Lanka Natl Inst Technol Trichy Dept Instrumentat & Control Engn Tiruchirappalli 620015 Tamil Nadu India
Robot-assisted surgery is an emerging technology that has undergone rapid growth with the development of robotics and imaging systems. Innovations in vision, haptics, and accurate movements of robot arms have enabled ... 详细信息
来源: 评论
SilhoNet: An RGB Method for 6D Object Pose Estimation
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 3727-3734页
作者: Billings, Gideon Johnson-Roberson, Matthew Univ Michigan Dept Naval Architecture & Marine Engn Ann Arbor MI 48109 USA
Autonomous robot manipulation involves estimating the translation and orientation of the object to be manipulated as a 6-degree-of-freedom (6D) pose. Methods using RGB-D data have shown great success in solving this p... 详细信息
来源: 评论
Toward Ergonomic Risk Prediction via Segmentation of Indoor Object Manipulation Actions Using Spatiotemporal Convolutional Networks
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 3153-3160页
作者: Parsa, Behnoosh Samani, Ekta U. Hendrix, Rose Devine, Cameron Singh, Shashi M. Devasia, Santosh Banerjeee, Ashis G. Univ Washington Dept Mech Engn Seattle WA 98195 USA Indian Inst Technol Gandhinagar Dept Mech Engn Gandhinagar 382355 India Univ Washington Dept Ind & Syst Engn Seattle WA 98195 USA
Automated real-time prediction of the ergonomic risks of manipulating objects is a key unsolved challenge in developing effective human-robot collaboration systems for logistics and manufacturing applications. We pres... 详细信息
来源: 评论
3-D Deformable Object Manipulation Using deep Neural Networks
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4255-4261页
作者: Hu, Zhe Han, Tao Sun, Peigen Pan, Jia Manocha, Dinesh City Univ Hong Kong Dept Biomed Engn Hong Kong Peoples R China Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China Univ Maryland Dept Comp Sci College Pk MD 20742 USA
Due to its high dimensionality, deformable object manipulation is a challenging problem in robotics. In this letter, we present a deep neural network based controller to servo control the position and shape of deforma... 详细信息
来源: 评论
GCNv2: Efficient Correspondence Prediction for Real-Time SLAM
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 3505-3512页
作者: Tang, Jiexiong Ericson, Ludvig Folkesson, John Jensfelt, Patric KTH Royal Inst Technol Ctr Autonomous Syst SE-10044 Stockholm Sweden
In this letter, we present a deep learning-based network, GCNv2, for generation of keypoints and descriptors. GCNv2 is built on our previous method, GCN, a network trained for 3D projective geometry. GCNv2 is designed... 详细信息
来源: 评论
learning From Humans How to Grasp: A Data-Driven Architecture for Autonomous Grasping With Anthropomorphic Soft Hands
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1533-1540页
作者: Della Santina, Cosimo Arapi, Visar Averta, Giuseppe Damiani, Francesca Fiore, Gaia Settimi, Alessandro Catalano, Manuel G. Bacciu, Davide Bicchi, Antonio Bianchi, Matteo Univ Pisa Ctr Ric Enrico Piaggio I-56126 Pisa Italy Univ Pisa Dipartimento Ingn Informaz I-56126 Pisa Italy Fdn Ist Italiano Tecnol Soft Robot Human Cooperat & Rehabil I-16163 Genoa Italy Univ Pisa Dipartimento Informat I-56127 Pisa Italy
Soft hands are robotic systems that embed compliant elements in their mechanical design. This enables an effective adaptation with the items and the environment, and ultimately, an increase in their grasping performan... 详细信息
来源: 评论
DispSegNet: Leveraging Semantics for End-to-End learning of Disparity Estimation From Stereo Imagery
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1162-1169页
作者: Zhang, Junming Skinner, Katherine A. Vasudevan, Ram Johnson-Roberson, Matthew Univ Michigan Dept Elect Engn & Comp Sci Ann Arbor MI 48109 USA Univ Michigan Robot Program Ann Arbor MI 48109 USA Univ Michigan Dept Mech Engn Ann Arbor MI 48109 USA Univ Michigan Dept Naval Architecture & Marine Engn Ann Arbor MI 48109 USA
Recentwork has shown that convolutional neural networks (CNNs) can be applied successfully in disparity estimation, but these methods still suffer from errors in regions of low texture, occlusions, and reflections. Co... 详细信息
来源: 评论
Sparse2Dense: From Direct Sparse Odometry to Dense 3-D Reconstruction
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 530-537页
作者: Tang, Jiexiong Folkesson, John Jensfelt, Patric KTH Royal Inst Technol Ctr Autonomous Syst SE-10044 Stockholm Sweden
In this letter, we proposed a new deep learning based dense monocular simultaneous localization and mapping (SLAM) method. Compared to existing methods, the proposed framework constructs a dense three-dimensional (3-D... 详细信息
来源: 评论