咨询与建议

限定检索结果

文献类型

  • 213 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 346 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 320 篇 工学
    • 181 篇 计算机科学与技术...
    • 126 篇 电气工程
    • 52 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 29 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 船舶与海洋工程
    • 3 篇 环境科学与工程(可...
  • 69 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 346 篇 denoising autoen...
  • 65 篇 deep learning
  • 22 篇 convolutional ne...
  • 19 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 noise

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 zhang lei
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang

语言

  • 334 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=Denoising Autoencoder"
346 条 记 录,以下是121-130 订阅
Ball Screw System Performance Evaluation based on denoising autoencoder
Ball Screw System Performance Evaluation based on Denoising ...
收藏 引用
The 29th International Congress on Condition Monitoring and Diagnostic Engineering Management
作者: Liang Guo Hongli Gao Haifeng Huang School of Mechanical Engineering Southwest Jiaotong University
Ball screw is widely used in many precision *** its performance is valuable to assure safe *** it is important to study on condition-based maintenance technique of ball *** this paper,we introduce a new ball screw per... 详细信息
来源: 评论
Wireless recording and autoencoder denoising of intestinal activity in freely moving rats
收藏 引用
JOURNAL OF PHARMACOLOGICAL SCIENCES 2025年 第1期158卷 54-58页
作者: Ishii, Yamato Matsumoto, Nobuyoshi Ikegaya, Yuji Kashima, Tetsuhiko Univ Tokyo Grad Sch Pharmaceut Sci Tokyo 1130033 Japan Univ Tokyo Inst AI & Beyond Tokyo 1130033 Japan Natl Inst Informat & Commun Technol Ctr Informat & Neural Networks Suita Osaka 5650871 Japan
Conventional wired systems for recording intestinal motility using strain-gauge transducers physically limit animal movement and are not ideal for long-term studies. Here, we developed a wireless recording system that... 详细信息
来源: 评论
A Novel denoising autoencoder Assisted Segmentation Algorithm for Cotton Field
A Novel Denoising Autoencoder Assisted Segmentation Algorith...
收藏 引用
Chinese Automation Congress (CAC)
作者: Li, Yanan Cao, Zhiguo Xiao, Yang Lu, Hao Zhu, Yanjun Huazhong Univ Sci & Technol Sch Automat Wuhan 430074 Peoples R China
Crop segmentation from the images captured in the outdoor field is a complex task in agriculture automation, let alone detecting some specific crops with one method. Cotton, as one of the four major economic crops, is... 详细信息
来源: 评论
Music Removal by Convolutional denoising autoencoder in Speech Recognition
Music Removal by Convolutional Denoising Autoencoder in Spee...
收藏 引用
Asia-Pacific-Signal-and-Information-Processing-Association Annual Summit and Conference (APSIPA ASC)
作者: Zhao, Mengyuan Wang, Dong Zhang, Zhiyong Zhang, Xuewei Tsinghua Univ Res Inst Informat Technol CSLT Tsinghua Natl Lab Informat Sci & Technol Beijing Peoples R China
Music embedding often causes significant performance degradation in automatic speech recognition (ASR). This paper proposes a music-removal method based on denoising autoencoder (DAE) that learns and removes music fro... 详细信息
来源: 评论
Unsupervised adaptation of a denoising autoencoder by Bayesian Feature Enhancement for reverberant asr under mismatch conditions  40
Unsupervised adaptation of a denoising autoencoder by Bayesi...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Heymann, Jahn Haeb-Umbach, Reinhold Golik, Pavel Schluter, Ralf University of Paderborn Department of Communications Engineering Paderborn Germany RWTH Aachen University Human Language Technology and Pattern Recognition Computer Science Department Aachen Aachen Germany
The parametric Bayesian Feature Enhancement (BFE) and a datadriven denoising autoencoder (DA) both bring performance gains in severe single-channel speech recognition conditions. The first can be adjusted to different... 详细信息
来源: 评论
Open-Set Specific Emitter Identification Leveraging Enhanced Metric denoising autoencoders
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2025年 第4期12卷 3453-3462页
作者: Huang, Shennan Guo, Lantu Fu, Xue Peng, Yang Guo, Yongan Wang, Yu Zhang, Qianyun Gui, Guan Sari, Hikmet Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing 210003 Peoples R China China Res Inst Radiowave Propagat Res Dept 5 Qingdao 266107 Peoples R China Nanjing Univ Posts & Telecommun Jiangsu Key Lab Intelligent Informat Proc & Commun Nanjing 210003 Peoples R China Beihang Univ Sch Cyber Sci & Technol Beijing 100191 Peoples R China
Specific emitter identification (SEI) is pivotal for ensuring the security of the Internet of Things (IoT). Traditional deep learning-based SEI techniques often falter in real-world applications, particularly when dis... 详细信息
来源: 评论
Point-DAE: denoising autoencoders for Self-Supervised Point Cloud Learning
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025年
作者: Zhang, Yabin Lin, Jiehong Li, Ruihuang Jia, Kui Zhang, Lei Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China South China Univ Technol Sch Elect & Informat Engn Guangzhou 510641 Peoples R China
Masked autoencoder (MAE) has demonstrated its effectiveness in self-supervised point cloud learning. Considering that masking is a kind of corruption, in this work we explore a more general denoising autoencoder for p... 详细信息
来源: 评论
Siamese denoising autoencoders for Enhancing Adversarial Robustness in Medical Image Analysis
收藏 引用
IEEE ACCESS 2025年 13卷 86333-86343页
作者: Shim, Jaesung Jo, Kyuri Chungbuk Natl Univ Dept Comp Engn Cheongju 28644 South Korea
Deep learning models have achieved groundbreaking results in computer vision;however, their vulnerability to adversarial examples persists. Adversarial examples, generated by adding minute perturbations to images, lea... 详细信息
来源: 评论
Defending Adversarial Attacks on Deep Learning-Based Power Allocation in Massive MIMO Using denoising autoencoders
收藏 引用
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING 2023年 第4期9卷 913-926页
作者: Sahay, Rajeev Zhang, Minjun Love, David J. J. Brinton, Christopher G. G. Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN 47907 USA Saab Inc Auton & Undersea Syst Div W Lafayette IN 47907 USA GoForward Inc San Francisco CA 94104 USA
Recent work has advocated for the use of deep learning to perform power allocation in the downlink of massive MIMO (maMIMO) networks. Yet, such deep learning models are vulnerable to adversarial attacks. In the contex... 详细信息
来源: 评论
Matrix factorization with denoising autoencoders for prediction of drug-target interactions
收藏 引用
MOLECULAR DIVERSITY 2023年 第3期27卷 1333-1343页
作者: Sajadi, Seyedeh Zahra Zare Chahooki, Mohammad Ali Tavakol, Maryam Gharaghani, Sajjad Yazd Univ Dept Comp Engn Yazd Iran Eindhoven Univ Technol Dept Math & Comp Sci Eindhoven Netherlands Univ Tehran Inst Biochem & Biophys Lab Bioinformat & Drug Design LBD Tehran Iran
Drug-target interaction is crucial in the discovery of new drugs. Computational methods can be used to identify new drug-target interactions at low costs and with reasonable accuracy. Recent studies pay more attention... 详细信息
来源: 评论