咨询与建议

限定检索结果

文献类型

  • 213 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 346 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 320 篇 工学
    • 181 篇 计算机科学与技术...
    • 126 篇 电气工程
    • 52 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 29 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 船舶与海洋工程
    • 3 篇 环境科学与工程(可...
  • 69 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 346 篇 denoising autoen...
  • 65 篇 deep learning
  • 22 篇 convolutional ne...
  • 19 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 noise

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 zhang lei
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang

语言

  • 334 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=Denoising Autoencoder"
346 条 记 录,以下是31-40 订阅
Semisupervised fault diagnosis of aeroengine based on denoising autoencoder and deep belief network
收藏 引用
AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY 2022年 第10期94卷 1772-1779页
作者: Lv, Defeng Wang, Huawei Che, Changchang Nanjing Univ Aeronaut & Astronaut Sch Civil Aviat Nanjing Peoples R China Nanjing Univ Aeronaut & Astronaut Coll Civil Aviat Nanjing Peoples R China Nanjing Forestry Univ Coll Automobile & Traff Engn Nanjing Peoples R China
Purpose The purpose of this study is to analyze the intelligent semisupervised fault diagnosis method of aeroengine. Design/methodology/approach A semisupervised fault diagnosis method based on denoising autoencoder (... 详细信息
来源: 评论
denoising autoencoder based Long non-coding RNA-Disease Association Prediction
收藏 引用
Procedia Computer Science 2023年 218卷 836-844页
作者: C.P. Gopikrishnan Manu Madhavan
Long non-coding RNAs (lncRNAs) are recent listing in RNA Bioinformatics, which is getting more popular due to their important functional roles. According to the available research, lncRNAs play an essential role in mu... 详细信息
来源: 评论
A Convolutional denoising autoencoder for Protein Scaffold Filling  19th
A Convolutional Denoising Autoencoder for Protein Scaffold F...
收藏 引用
19th International Symposium on Bioinformatics Research and Applications
作者: Sturtz, Jordan Annan, Richard Zhu, Binhai Liu, Xiaowen Qingge, Letu North Carolina A&T State Univ Dept Comp Sci Greensboro NC 27411 USA Montana State Univ Gianforte Sch Comp Bozeman MT USA Tulane Univ John W Deming Dept Med New Orleans LA USA
De novo protein sequencing is a valuable task in proteomics, yet it is not a fully solved problem. Many state-of-the-art approaches use top-down and bottom-up tandem mass spectrometry (MS/MS) to sequence proteins. How... 详细信息
来源: 评论
Anomaly Root Cause Analysis forWind Turbines Based on denoising autoencoder and Sparse Estimation  12
Anomaly Root Cause Analysis forWind Turbines Based on Denois...
收藏 引用
IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)
作者: Du, Songtao Wan, Yiming Zhang, Cong Zhang, Sihang Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Wuhan 430074 Peoples R China Beijing Inst Control Engn Beijing 100094 Peoples R China
Wind turbine condition monitoring has been extensively studied to reduce maintenance costs. Although there exist a vast amount of literature on anomaly detection for wind turbine, anomaly root cause analysis has not b... 详细信息
来源: 评论
Concept Drift Detection with denoising autoencoder in Incomplete Data  18th
Concept Drift Detection with Denoising Autoencoder in Incomp...
收藏 引用
18th European-Alliance-for-Innovation (EAI) International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous)
作者: Murao, Jun Yonekawa, Kei Kurokawa, Mori Amagata, Daichi Maekawa, Takuya Hara, Takahiro Osaka Univ Osaka Japan KDDI Res Inc Saitama Japan
Recent e-commerce and location-based services provide personalized recommendations based on machine-learning models that take into account purchase and visiting histories. Because machine-learning models assume the sa... 详细信息
来源: 评论
denoising autoencoder Based Delete and Generate Approach for Text Style Transfer  30th
Denoising AutoEncoder Based Delete and Generate Approach for...
收藏 引用
30th International Conference on Artificial Neural Networks (ICANN)
作者: Hu, Ting Yang, Haojin Meinel, Christoph Univ Potsdam Hasso Plattner Inst Potsdam Germany
Text style transfer task is transferring sentences to other styles while preserving the semantics as much as possible. In this work, we study a two-step text style transfer method on non-parallel datasets. In the firs... 详细信息
来源: 评论
An Efficient Convolutional denoising autoencoder-Based BDS NLOS Detection Method in Urban Forest Environments
收藏 引用
SENSORS 2024年 第6期24卷 1959页
作者: Qin, Yahang Li, Zhenni Xie, Shengli Zhao, Haoli Wang, Qianming Guangdong Univ Technol Sch Automat Guangzhou 510006 Peoples R China Guangdong HongKong Macao Joint Lab Smart Discrete Guangzhou 510006 Guangdong Peoples R China 111 Ctr Intelligent Batch Mfg Based IoT Technol G Guangzhou 510006 Peoples R China Minist Educ Key Lab Intelligent Informat Proc & Syst Integrat Guangzhou 510006 Peoples R China Guangdong Key Lab IoT Informat Technol GDUT Guangzhou 510006 Peoples R China Taidou Microelect Technol Co Ltd Guangzhou 510663 Peoples R China
The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly evolving field of autonomous driving. In complex urban environme... 详细信息
来源: 评论
A denoising autoencoder based on U-Net and bidirectional long short-term memory for multi-level random telegraph signal analysis
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 135卷
作者: Deng, Bowen Yang, Heebong Kim, Na Young Univ Waterloo Dept Elect & Comp Engn 200 Univ Ave West Waterloo ON N2L 3G1 Canada Univ Waterloo Inst Quantum Comp 200 Univ Ave West Waterloo ON N2L 3G1 Canada Univ Waterloo Waterloo Inst Nanotechnol 200 Univ Ave West Waterloo ON N2L 3G1 Canada Univ Waterloo Dept Chem 200 Univ Ave West Waterloo ON N2L 3G1 Canada
Random telegraph signals (RTSs) are specific time -fluctuating signal patterns marked by a series of distinctive switching events between well-defined signal levels. These signals are ubiquitous in many electronic, ch... 详细信息
来源: 评论
The integration of knowledge graph convolution network with denoising autoencoder
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 135卷
作者: Kaur, Gurinder Liu, Fei Chen, Yi-Ping Phoebe La Trobe Univ Dept Comp Sci & Informat Technol Melbourne Vic Australia
The knowledge graph convolution network (KGCN) is a recommendation model that provides a set of top recommendations based on knowledge graph developed between users, items, and their attributes. In this study, we inte... 详细信息
来源: 评论
denoising autoencoder-Based Missing Value Imputation for Smart Meters
收藏 引用
IEEE ACCESS 2020年 8卷 40656-40666页
作者: Ryu, Seunghyoung Kim, Minsoo Kim, Hongseok Sogang Univ Dept Elect Engn Seoul 4107 South Korea
Electric load data are essential for data-driven approaches (including deep learning) in smart grid, and advanced smart meter technologies provide fine-grained data with reliable communications. Despite the recent dev... 详细信息
来源: 评论