咨询与建议

限定检索结果

文献类型

  • 213 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 346 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 320 篇 工学
    • 181 篇 计算机科学与技术...
    • 126 篇 电气工程
    • 52 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 29 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 船舶与海洋工程
    • 3 篇 环境科学与工程(可...
  • 69 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 346 篇 denoising autoen...
  • 65 篇 deep learning
  • 22 篇 convolutional ne...
  • 19 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 noise

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 zhang lei
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang

语言

  • 334 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=Denoising Autoencoder"
346 条 记 录,以下是81-90 订阅
排序:
Domain adaptation network based on hypergraph regularized denoising autoencoder
收藏 引用
ARTIFICIAL INTELLIGENCE REVIEW 2019年 第3期52卷 2061-2079页
作者: Wang, Xuesong Ma, Yuting Cheng, Yuhu China Univ Min & Technol Sch Informat & Control Engn Xuzhou 221116 Jiangsu Peoples R China
Domain adaptation learning aims to solve the classification problems of unlabeled target domain by using rich labeled samples in source domain, but there are three main problems: negative transfer, under adaptation an... 详细信息
来源: 评论
uDAS: An Untied denoising autoencoder With Sparsity for Spectral Unmixing
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2019年 第3期57卷 1698-1712页
作者: Qu, Ying Qi, Hairong Univ Tennessee Adv Imaging & Collaborat Informat Proc Grp Dept Elect Engn & Comp Sci Knoxville TN 37996 USA
Linear spectral unmixing is the practice of decomposing the mixed pixel into a linear combination of the constituent endmembers and the estimated abundances. This paper focuses on unsupervised spectral unmixing where ... 详细信息
来源: 评论
Transformed denoising autoencoder prior for image restoration
收藏 引用
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION 2020年 72卷 102927-102927页
作者: Zhou, Jinjie He, Zhuonan Liu, Xiaodong Wang, Yuhao Wang, Shanshan Liu, Qiegen Nanchang Univ Dept Elect Informat Engn Nanchang 330031 Jiangxi Peoples R China Wuhan Univ Sch Elect Informat Wuhan 430072 Peoples R China Chinese Acad Sci Paul C Lauterbur Res Ctr Biomed Imaging Shenzhen Inst Adv Technol Shenzhen 518055 Peoples R China
Image restoration problem is generally ill-posed, which can be alleviated by learning image prior. Inspired by the considerable performance of utilizing priors in pixel domain and wavelet domain jointly, we propose a ... 详细信息
来源: 评论
denoising autoencoder Self-Organizing Map (DASOM)
收藏 引用
NEURAL NETWORKS 2018年 105卷 112-131页
作者: Ferles, Christos Papanikolaou, Yannis Naidoo, Kevin J. Univ Cape Town Sci Comp Res Unit Fac Sci ZA-7701 Rondebosch South Africa Univ Cape Town Dept Chem Fac Sci ZA-7701 Rondebosch South Africa Aristotle Univ Thessaloniki Dept Informat Thessaloniki 54124 Greece Univ Cape Town Inst Infect Dis & Mol Med Fac Heath Sci ZA-7701 Rondebosch South Africa
In this report, we address the question of combining nonlinearities of neurons into networks for modeling increasingly varying and progressively more complex functions. A fundamental approach is the use of higher-leve... 详细信息
来源: 评论
Wi-Fi DSAR: Wi-Fi based Indoor Localization using denoising Supervised autoencoder  30
Wi-Fi DSAR: Wi-Fi based Indoor Localization using Denoising ...
收藏 引用
30th Wireless and Optical Communications Conference (WOCC)
作者: Wang, Yun-Hao Yang, Ta-Wei Chou, Cheng-Fu Chang, Ing-Chau Natl Taiwan Univ Dept Comp Sci & Informat Engn Taipei Taiwan Natl Taiwan Univ Grad Inst Networking & Multimedia Taipei Taiwan Natl Taiwan Univ Informat Technol Off Taipei Taiwan Natl Changhua Univ Educ Dept Comp Sci & Informat Engn Changhua Taiwan
In recent years, the demand for Wi-Fi has grown exponentially, which has led to the rapid development of indoor positioning services based on Wi-Fi fingerprints. Due to the Received Signal Strength Indicator (RSSI) va... 详细信息
来源: 评论
Automated Computer-aided Design of Cranial Implants Using a Deep Volumetric Convolutional denoising autoencoder
Automated Computer-aided Design of Cranial Implants Using a ...
收藏 引用
World Conference on Information Systems and Technologies (WorldCIST)
作者: Morais, Ana Egger, Jan Alves, Victor Univ Minho Sch Engn Dept Informat Braga Portugal Graz Univ Technol Inst Comp Graph & Vis Graz Austria Univ Minho Algoritmi Ctr Braga Portugal Comp Algorithms Med Lab Graz Austria
Computer-aided Design (CAD) software enables the design of patient-specific cranial implants, but it often requires of a lot of manual user-interactions. This paper proposes a Deep Learning (DL) approach towards the a... 详细信息
来源: 评论
A Degradation Indicator Construction Method for Aeroengine Lifetime Estimation based on denoising autoencoder  3
A Degradation Indicator Construction Method for Aeroengine L...
收藏 引用
IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)
作者: Niu Yifan Shao Jingfeng Xian Polytech Univ Sch Management Xian Shaanxi Peoples R China
Degradation indicator construction is essential for the lifetime estimation process, since it provides useful indicator for lifetime estimation effectively. However, the degradation indicator is hard to constructed be... 详细信息
来源: 评论
DUAL denoising autoencoder FEATURE LEARNING FOR CANCER DIAGNOSIS  18
DUAL DENOISING AUTOENCODER FEATURE LEARNING FOR CANCER DIAGN...
收藏 引用
18th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC)
作者: Gao, Yuqing Ng, Wing W. Y. Wang, Ting Kwong, Sam South China Univ Technol Guangdong Prov Key Lab Computat Intelligence & Cy Sch Comp Sci & Engn Guangzhou Peoples R China City Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China
Microarray data analysis has emerged as a strong tool for cancer diagnosis. Nevertheless, researches on it are significantly challenging as the microarray datasets are imbalanced and high-dimensional with relatively s... 详细信息
来源: 评论
A denoising autoencoder FOR SPEAKER RECOGNITION. RESULTS ON THE MCE 2018 CHALLENGE  44
A DENOISING AUTOENCODER FOR SPEAKER RECOGNITION. RESULTS ON ...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Font, Roberto Biometr Vox SL Murcia Spain
We propose a denoising autoencoder ( DAE) for speaker recognition, trained to map each individual ivector to the mean of all ivectors belonging to that particular speaker. The aim of this DAE is to compensate for inte... 详细信息
来源: 评论
Multivariate Time Series Missing Data Imputation Using Recurrent denoising autoencoder
Multivariate Time Series Missing Data Imputation Using Recur...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Zhang, Jianye Yin, Peng Chinese Acad Sci Joint Engn Res Ctr Hlth Big Data Intelligent Anal Shenzhen Inst Adv Technol Shenzhen Peoples R China Tsinghua Univ Shenzhen Int Grad Sch Dept Comp Sci & Technol Shenzhen Peoples R China
This paper presents a novel method for imputing missing data of multivariate time series by adapting the Long Short Term-Memory(LSTM) and denoising autoencoder(DAE). Missing data are ubiquitous in many domains;proper ... 详细信息
来源: 评论