咨询与建议

限定检索结果

文献类型

  • 209 篇 期刊文献
  • 132 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 343 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 177 篇 计算机科学与技术...
    • 125 篇 电气工程
    • 50 篇 信息与通信工程
    • 44 篇 控制科学与工程
    • 29 篇 软件工程
    • 26 篇 仪器科学与技术
    • 22 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 交通运输工程
    • 3 篇 船舶与海洋工程
  • 71 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 10 篇 化学
    • 7 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 343 篇 denoising autoen...
  • 64 篇 deep learning
  • 22 篇 convolutional ne...
  • 16 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 anomaly detectio...
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 8 篇 unsupervised lea...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 deep neural netw...

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang
  • 2 篇 teeparthi kiran

语言

  • 330 篇 英文
  • 12 篇 其他
  • 1 篇 中文
检索条件"主题词=Denoising autoencoder"
343 条 记 录,以下是141-150 订阅
排序:
denoising gravitational-wave signals from binary black holes with a dilated convolutional autoencoder
收藏 引用
MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2023年 第3期4卷 035024页
作者: Bacon, Philippe Trovato, Agata Bejger, Michal Univ Paris cite CNRS Astroparticule & Cosmol F-75013 Paris France Univ Trieste Dipartimento Fis I-34127 Trieste Italy Sez Trieste INFN I-34127 Trieste Italy INFN Sez Ferrara Via Saragat 1 I-44122 Ferrara Italy Polish Acad Sci Nicolaus Copernicus Astron Ctr Bartycka 18 PL-00716 Warsaw Poland
The broadband frequency output of gravitational-wave (GW) detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated by local disturbances and transient artifacts, which evolve... 详细信息
来源: 评论
Medical image denoising system based on stacked convolutional autoencoder for enhancing 2-dimensional gel electrophoresis noise reduction
收藏 引用
BIOMEDICAL SIGNAL PROCESSING AND CONTROL 2021年 第0期69卷 102842-102842页
作者: Ahmed, Aya Saleh El-Behaidy, Wessam H. Youssif, Aliaa A. A. Helwan Univ Fac Comp & Artificial Intelligence Cairo Egypt Arab Acad Sci Technol & Maritime Transport AASTMT Al Giza Desert Giza Governorat Egypt
Image denoising is the technique of removing noise or distortions from an image. During medical image acquisition, random noise is added, which results in a lower contrast in those images. For that, image denoising is... 详细信息
来源: 评论
Near-surface defect detection in ultrasonic testing using domain-knowledge-informed self-supervised learning
收藏 引用
ULTRASONICS 2025年 147卷 107528页
作者: Jeon, Minsu Choi, Minseok Choi, Wonjae Ha, Jong Moon Oh, Hyunseok Gwangju Inst Sci & Technol GIST Sch Mech Engn Gwangju 61005 South Korea Ajou Univ Dept Mech Engn Suwon 16499 South Korea Korea Res Inst Stand & Sci KRISS Nondestruct Metrol Grp Daejeon 34113 South Korea
Recently, significant research efforts have been made to enhance ultrasonic testing (UT) by employing artificial intelligence (AI). However, collecting an extensive amount of labeled data across various testing enviro... 详细信息
来源: 评论
End to end multifunctional autoencoder-based classification and denoising network
End to end multifunctional autoencoder-based classification ...
收藏 引用
作者: Mingze Zhou College of Computer Science and Technology Zhejiang University
Brain tumours are one of the common diseases in human beings. Currently, brain Nuclear Magnetic Resonance(MRI) is the main means of detecting brain diseases. There are many works related to the classification and nois... 详细信息
来源: 评论
Defending Adversarial Attacks on Deep Learning-Based Power Allocation in Massive MIMO Using denoising autoencoders
收藏 引用
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING 2023年 第4期9卷 913-926页
作者: Sahay, Rajeev Zhang, Minjun Love, David J. J. Brinton, Christopher G. G. Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN 47907 USA Saab Inc Auton & Undersea Syst Div W Lafayette IN 47907 USA GoForward Inc San Francisco CA 94104 USA
Recent work has advocated for the use of deep learning to perform power allocation in the downlink of massive MIMO (maMIMO) networks. Yet, such deep learning models are vulnerable to adversarial attacks. In the contex... 详细信息
来源: 评论
MIDIA: exploring denoising autoencoders for missing data imputation
收藏 引用
DATA MINING AND KNOWLEDGE DISCOVERY 2020年 第6期34卷 1859-1897页
作者: Ma, Qian Lee, Wang-Chien Fu, Tao-Yang Gu, Yu Yu, Ge Dalian Maritime Univ Coll Informat Sci & Technol Dalian Peoples R China Penn State Univ Dept Comp Sci & Engn State Coll PA 16801 USA Northeastern Univ Sch Engn & Comp Sci Shenyang Peoples R China
Due to the ubiquitous presence of missing values (MVs) in real-world datasets, the MV imputation problem, aiming to recover MVs, is an important and fundamental data preprocessing step for various data analytics and m... 详细信息
来源: 评论
Examining the Mapping Functions of denoising autoencoders in Singing Voice Separation
收藏 引用
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 2020年 28卷 266-278页
作者: Mimilakis, Stylianos Ioannis Drossos, Konstantinos Cano, Estefania Schuller, Gerald Fraunhofer IDMT Semant Mus Technol Grp D-98693 Ilmenau Germany Tampere Univ Audio Res Grp Tampere 33720 Finland Tech Univ Ilmenau Inst Media Technol D-98693 Ilmenau Germany
The goal of this article is to investigate what singing voice separation approaches based on neural networks learn from the data. We examine the mapping functions of neural networks based on the denoising autoencoder ... 详细信息
来源: 评论
Dynamic Feature Acquisition Using denoising autoencoders
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019年 第8期30卷 2252-2262页
作者: Kachuee, Mohammad Darabi, Sajad Moatamed, Babak Sarrafzadeh, Majid Univ Calif Los Angeles Dept Comp Sci Los Angeles CA 90095 USA
In real-world scenarios, different features have different acquisition costs at test time which necessitates cost-aware methods to optimize the cost and performance tradeoff. This paper introduces a novel and scalable... 详细信息
来源: 评论
Convolutional adaptive denoising autoencoders for hierarchical feature extraction
收藏 引用
Frontiers of Computer Science 2018年 第6期12卷 1140-1148页
作者: Qianjun ZHANG Lei ZHANG Machine Intelligence Laboratory College of Computer ScienceSichuan UniversityChengdu 610065China
Convolutional neural networks (CNNs) are typical structures for deep learning and are widely used in image recognition and classification. However, the random initialization strategy tends to become stuck at local pla... 详细信息
来源: 评论
Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography
收藏 引用
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 2018年 884卷 97-104页
作者: Lee, Donghoon Choi, Sunghoon Kim, Hee-Joung Yonsei Univ Res Inst Hlth Sci Dept Radiat Convergence Engn 1 Yonseidae Gil Wonju 220710 Gangwon South Korea Yonsei Univ Coll Hlth Sci Dept Radiol Sci 1 Yonseidae Gil Wonju 220710 Gangwon South Korea
When processing medical images, image denoising is an important pre-processing step. Various image denoising algorithms have been developed in the past few decades. Recently, image denoising using the deep learning me... 详细信息
来源: 评论