咨询与建议

限定检索结果

文献类型

  • 207 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 340 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 176 篇 计算机科学与技术...
    • 123 篇 电气工程
    • 50 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 28 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 船舶与海洋工程
    • 3 篇 环境科学与工程(可...
  • 69 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 340 篇 denoising autoen...
  • 64 篇 deep learning
  • 21 篇 convolutional ne...
  • 16 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 remaining useful...

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang
  • 2 篇 teeparthi kiran

语言

  • 328 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=Denoising autoencoder"
340 条 记 录,以下是191-200 订阅
排序:
Energy-efficient VM scheduling based on deep reinforcement learning
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2021年 125卷 616-628页
作者: Wang, Bin Liu, Fagui Lin, Weiwei South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China
Achieving data center resource optimization and QoS guarantee driven by high energy efficiency has become a research hotspot. However, QoS information directly sampled from the cloud environment will inevitably be aff... 详细信息
来源: 评论
Learning social representations with deep autoencoder for recommender system
收藏 引用
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS 2020年 第4期23卷 2259-2279页
作者: Pan, Yiteng He, Fazhi Yu, Haiping Wuhan Univ Sch Comp Sci Wuhan Peoples R China
With the development of online social media, it attracts increasingly attentions to utilize social information for recommender systems. Based on the intuition that users are influenced by their social friends, these m... 详细信息
来源: 评论
Deep Learning Modeling for Top-N Recommendation With Interests Exploring
收藏 引用
IEEE ACCESS 2018年 6卷 51440-51455页
作者: Zhou, Wang Li, Jianping Zhang, Malu Wang, Yazhou Shah, Fadia Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 610054 Sichuan Peoples R China Univ Elect Sci & Technol China Sch Optoelect Informat Chengdu 610054 Sichuan Peoples R China
Recommender systems (RS) currently play a crucial role in information filtering and retrieval, and have been ubiquitously applied in many domains, although suffering from such data sparsity and cold start problems. Th... 详细信息
来源: 评论
Prediction of combustion state through a semi-supervised learning model and flame imaging
收藏 引用
FUEL 2021年 289卷 119745-119745页
作者: Han, Zhezhe Li, Jian Zhang, Biao Hossain, Md Moinul Xu, Chuanlong Southeast Univ Sch Energy & Environm Key Lab Energy Thermal Convers & Control Minist Educ Nanjing 210096 Peoples R China Univ Kent Sch Engn & Digital Arts Canterbury CT2 7NT Kent England
Accurate prediction of combustion state is crucial for an in-depth understanding of furnace performance and optimize operation conditions. Traditional data-driven approaches such as artificial neural networks and supp... 详细信息
来源: 评论
Combination of bottleneck feature extraction and dereverberation for distant-talking speech recognition
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2016年 第9期75卷 5093-5108页
作者: Ren, Bo Wang, Longbiao Lu, Liang Ueda, Yuma Kai, Atsuhiko Nagaoka Univ Technol 1603-1 Kamitomioka Nagaoka Niigata 9402188 Japan Univ Edinburgh Ctr Speech Technol Res Edinburgh Midlothian Scotland Shizuoka Univ Naka Ku 3-5-1 Johoku Hamamatsu Shizuoka 4328561 Japan
The performance of speech recognition in distant-talking environments is severely degraded by the reverberation that can occur in enclosed spaces (e.g., meeting rooms). To mitigate this degradation, dereverberation te... 详细信息
来源: 评论
An End-to-End Deep Learning Framework for Real-Time denoising of Heart Sounds for Cardiac Disease Detection in Unseen Noise
收藏 引用
IEEE ACCESS 2023年 11卷 87887-87901页
作者: Ali, Shams Nafisa Shuvo, Samiul Based Al-Manzo, Muhammad Ishtiaque Sayeed Hasan, Anwarul Hasan, Taufiq Bangladesh Univ Engn & Technol BUET Dept Biomed Engn mHlth Lab Dhaka 1205 Bangladesh Natl Heart Fdn Hosp & Res Inst Dept Cardiac Surg Dhaka 1216 Bangladesh Qatar Univ Dept Mech & Ind Engn Doha Qatar Qatar Univ Biomed Res Ctr Doha Qatar Johns Hopkins Univ Ctr Bioengn Innovat & Design Dept Biomed Engn Baltimore MD 21218 USA
The heart sound signals captured via a digital stethoscope are often distorted by environmental and physiological noise, altering their salient and critical properties. The problem is exacerbated in crowded low-resour... 详细信息
来源: 评论
Deep Learning of Transferable Representation for Scalable Domain Adaptation
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2016年 第8期28卷 2027-2040页
作者: Long, Mingsheng Wang, Jianmin Cao, Yue Sun, Jiaguang Yu, Philip S. Tsinghua Univ Tsinghua Natl Lab Informat Sci & Techonolgy TNLis Sch Software Beijing Peoples R China Tsinghua Univ Inst Data Sci Beijing Peoples R China Univ Illinois Chicago IL 60607 USA
Domain adaptation generalizes a learning model across source domain and target domain that are sampled from different distributions. It is widely applied to cross-domain data mining for reusing labeled information and... 详细信息
来源: 评论
Lifted Bregman Training of Neural Networks
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2023年 第1期24卷 1-51页
作者: Wang, Xiaoyu Benning, Martin Univ Cambridge Dept Appl Math & Theoret Phys Cambridge CB3 0WA England Queen Mary Univ London Sch Math Sci London E1 4NS England
We introduce a novel mathematical formulation for the training of feed-forward neural networks with (potentially non-smooth) proximal maps as activation functions. This formulation is based on Bregman distances and a ... 详细信息
来源: 评论
Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images
收藏 引用
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 2016年 第Jun.期116卷 24-41页
作者: Zhang, Puzhao Gong, Maoguo Su, Linzhi Liu, Jia Li, Zhizhou Xidian Univ Key Lab Intelligent Percept & Image Understanding Minist Educ Int Res Ctr Intelligent Percept & Computat Xian 710071 Shaanxi Provinc Peoples R China
Multi-spatial-resolution change detection is a newly proposed issue and it is of great significance in remote sensing, environmental and land use monitoring, etc. Though multi-spatial-resolution image pair are two kin... 详细信息
来源: 评论
A novel U-Net with dense block for drum signal separation from polyphonic music signal mixture
收藏 引用
SIGNAL IMAGE AND VIDEO PROCESSING 2023年 第3期17卷 627-633页
作者: George, E. Vinitha Devassia, V. P. Cochin Univ Sci & Technol Model Engn Coll Kochi Kerala India St Josephs Coll Engn & Technol Palai Kerala India
Deep neural network algorithms have shown promising results for music source signal separation. Most existing methods rely on deep networks, where billions of parameters need to be trained. In this paper, we propose a... 详细信息
来源: 评论