咨询与建议

限定检索结果

文献类型

  • 208 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 341 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 314 篇 工学
    • 176 篇 计算机科学与技术...
    • 124 篇 电气工程
    • 51 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 27 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 10 篇 机械工程
    • 10 篇 动力工程及工程热...
    • 9 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 环境科学与工程(可...
    • 3 篇 网络空间安全
  • 70 篇 理学
    • 33 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 43 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
    • 3 篇 药学(可授医学、理...
  • 22 篇 管理学
    • 18 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 341 篇 denoising autoen...
  • 65 篇 deep learning
  • 21 篇 convolutional ne...
  • 16 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 remaining useful...

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang
  • 2 篇 teeparthi kiran

语言

  • 329 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=Denoising autoencoder"
341 条 记 录,以下是241-250 订阅
排序:
A Low-complexity Visual Tracking Approach with Single Hidden Layer Neural Networks  13
A Low-complexity Visual Tracking Approach with Single Hidden...
收藏 引用
13th International Conference on Control Automation Robotics & Vision (ICARCV)
作者: Dai, Liang Zhu, Yuesheng Luo, Guibo He, Chao Peking Univ Shenzhen Grad Sch Inst Big Data Technol Lab Commun & Informat Secur Beijing Peoples R China
Visual tracking algorithms based on deep learning have robust performance against variations in a complex environment because deep learning can learn generic features from numerous unlabeled images. However, due to th... 详细信息
来源: 评论
An Agreement Based Dynamic Routing Method for Fault Diagnosis in Power Network with Enhanced Noise Immunity  31
An Agreement Based Dynamic Routing Method for Fault Diagnosi...
收藏 引用
31st Australasian Universities Power Engineering Conference (AUPEC)
作者: Fahim, Shahriar Rahman Muyeen, S. M. Sarker, Yeahia Sarker, Subrata K. Das, Sajal K. Amer Int Univ Bangladesh Dhaka 1229 Bangladesh Qatar Univ Doha 2713 Qatar Rajshahi Univ Engn & Technol Rajshahi 6204 Bangladesh
The stable operation of a power system often depends on inscribing the faults that may arise when transmitting and distributing electrical power. Characterizing these faults is necessary to analyze the post-fault osci... 详细信息
来源: 评论
SEPARATION MATRIX OPTIMIZATION USING ASSOCIATIVE MEMORY MODEL FOR BLIND SOURCE SEPARATION  23
SEPARATION MATRIX OPTIMIZATION USING ASSOCIATIVE MEMORY MODE...
收藏 引用
23rd European Signal Processing Conference (EUSIPCO)
作者: Omachi, Motoi Ogawa, Tetsuji Kobayashi, Tetsunori Fujieda, Masaru Katagiri, Kazuhiro Waseda Univ Dept Comp Sci Tokyo Japan Oki Elect Ind Co Ltd Minato Tokyo Japan
A source signalis estimated using an associative memory model (AMM) and used for separation matrix optimization in linear blind source separation (BSS) to yield high quality and less distorted speech. Linear-filtering... 详细信息
来源: 评论
ROBUST RECOGNITION OF SPEECH WITH BACKGROUND MUSIC IN ACOUSTICALLY UNDER-RESOURCED SCENARIOS
ROBUST RECOGNITION OF SPEECH WITH BACKGROUND MUSIC IN ACOUST...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Malek, Jiri Zdansky, Jindrich Cerva, Petr Tech Univ Liberec Fac Mechatron Informat & Interdisciplinary Studie Studentska 2 Liberec 46117 Czech Republic
This paper addresses the task of Automatic Speech Recognition (ASR) with music in the background. We consider two different situations: 1) scenarios with very small amount of labeled training utterances (duration 1 ho... 详细信息
来源: 评论
Bottleneck Features from SNR-Adaptive denoising Deep Classifier for Speaker Identification
Bottleneck Features from SNR-Adaptive Denoising Deep Classif...
收藏 引用
Asia-Pacific-Signal-and-Information-Processing-Association Annual Summit and Conference (APSIPA ASC)
作者: Tan, Zhili Mak, Man-Wai Hong Kong Polytech Univ Dept Elect & Informat Engn Ctr Signal Proc Hong Kong Hong Kong Peoples R China
In this paper, we explore the potential of using deep learning for extracting speaker-dependent features for noise robust speaker identification. More specifically, an SNR-adaptive denoising classifier is constructed ... 详细信息
来源: 评论
MULTI-TASK autoencoder FOR NOISE-ROBUST SPEECH RECOGNITION
MULTI-TASK AUTOENCODER FOR NOISE-ROBUST SPEECH RECOGNITION
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhang, Haoyi Liu, Conggui Inoue, Nakamasa Shinoda, Koichi Tokyo Inst Technol Tokyo Japan
For speech recognition in noisy environments, we propose a multi-task autoencoder which estimates not only clean speech features but also noise features from noisy speech. We introduce the deSpeeching autoencoder, whi... 详细信息
来源: 评论
Frequency Offset Correction in Single Sideband(SSB) Speech by Deep Neural Network for Speaker Verification  16
Frequency Offset Correction in Single Sideband(SSB) Speech b...
收藏 引用
16th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2015)
作者: Xing, Hua Liu, Gang Hansen, John H. L. Univ Texas Dallas Ctr Robust Speech Syst Richardson TX 75083 USA
Communication system mismatch represents a major influence for loss in speaker recognition performance. This paper considers a type of nonlinear communication system mismatch- modulation/demodulation (Mod/DeMod) carri... 详细信息
来源: 评论
Microscopic biopsy image reconstruction using inception block with denoising auto-encoder approach
收藏 引用
International Journal of Information Technology (Singapore) 2024年 第4期16卷 2413-2423页
作者: Singh, Shiksha Kumar, Rajesh Department of Electronics & Communication JK Institute of Applied Physics & Technology University of Allahabad UP Prayagraj India
The use of computer-aided image analysis for disease diagnosis and prognosis has dramatically increased during the past 10 years. The introduction of computer-assisted image analysis of images produced by equipme... 详细信息
来源: 评论
Self-supervised Siamese autoencoders  22nd
Self-supervised Siamese Autoencoders
收藏 引用
22nd International Symposium on Intelligent Data Analysis (IDA)
作者: Baier, Friederike Mair, Sebastian Fadel, Samuel G. Leuphana Univ Luneburg Luneburg Germany Uppsala Univ Uppsala Sweden Linkoping Univ Linkoping Sweden
In contrast to fully-supervised models, self-supervised representation learning only needs a fraction of data to be labeled and often achieves the same or even higher downstream performance. The goal is to pre-train d... 详细信息
来源: 评论
SPEECH FEATURE denoising AND DEREVERBERATION VIA DEEP autoencoderS FOR NOISY REVERBERANT SPEECH RECOGNITION
SPEECH FEATURE DENOISING AND DEREVERBERATION VIA DEEP AUTOEN...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Feng, Xue Zhang, Yaodong Glass, James MIT Comp Sci & Artificial Intelligence Lab Cambridge MA 02139 USA
denoising autoencoders (DAs) have shown success in generating robust features for images, but there has been limited work in applying DAs for speech. In this paper we present a deep denoising autoencoder (DDA) framewo... 详细信息
来源: 评论