咨询与建议

限定检索结果

文献类型

  • 207 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 340 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 176 篇 计算机科学与技术...
    • 123 篇 电气工程
    • 50 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 28 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 船舶与海洋工程
    • 3 篇 环境科学与工程(可...
  • 69 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 340 篇 denoising autoen...
  • 64 篇 deep learning
  • 21 篇 convolutional ne...
  • 16 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 remaining useful...

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang
  • 2 篇 teeparthi kiran

语言

  • 328 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=Denoising autoencoder"
340 条 记 录,以下是241-250 订阅
排序:
Bottleneck Features from SNR-Adaptive denoising Deep Classifier for Speaker Identification
Bottleneck Features from SNR-Adaptive Denoising Deep Classif...
收藏 引用
Asia-Pacific-Signal-and-Information-Processing-Association Annual Summit and Conference (APSIPA ASC)
作者: Tan, Zhili Mak, Man-Wai Hong Kong Polytech Univ Dept Elect & Informat Engn Ctr Signal Proc Hong Kong Hong Kong Peoples R China
In this paper, we explore the potential of using deep learning for extracting speaker-dependent features for noise robust speaker identification. More specifically, an SNR-adaptive denoising classifier is constructed ... 详细信息
来源: 评论
A Low-complexity Visual Tracking Approach with Single Hidden Layer Neural Networks  13
A Low-complexity Visual Tracking Approach with Single Hidden...
收藏 引用
13th International Conference on Control Automation Robotics & Vision (ICARCV)
作者: Dai, Liang Zhu, Yuesheng Luo, Guibo He, Chao Peking Univ Shenzhen Grad Sch Inst Big Data Technol Lab Commun & Informat Secur Beijing Peoples R China
Visual tracking algorithms based on deep learning have robust performance against variations in a complex environment because deep learning can learn generic features from numerous unlabeled images. However, due to th... 详细信息
来源: 评论
ROBUST RECOGNITION OF SPEECH WITH BACKGROUND MUSIC IN ACOUSTICALLY UNDER-RESOURCED SCENARIOS
ROBUST RECOGNITION OF SPEECH WITH BACKGROUND MUSIC IN ACOUST...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Malek, Jiri Zdansky, Jindrich Cerva, Petr Tech Univ Liberec Fac Mechatron Informat & Interdisciplinary Studie Studentska 2 Liberec 46117 Czech Republic
This paper addresses the task of Automatic Speech Recognition (ASR) with music in the background. We consider two different situations: 1) scenarios with very small amount of labeled training utterances (duration 1 ho... 详细信息
来源: 评论
Frequency Offset Correction in Single Sideband(SSB) Speech by Deep Neural Network for Speaker Verification  16
Frequency Offset Correction in Single Sideband(SSB) Speech b...
收藏 引用
16th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2015)
作者: Xing, Hua Liu, Gang Hansen, John H. L. Univ Texas Dallas Ctr Robust Speech Syst Richardson TX 75083 USA
Communication system mismatch represents a major influence for loss in speaker recognition performance. This paper considers a type of nonlinear communication system mismatch- modulation/demodulation (Mod/DeMod) carri... 详细信息
来源: 评论
A Lightweight sequence-based Unsupervised Loop Closure Detection
A Lightweight sequence-based Unsupervised Loop Closure Detec...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Xiong, Fan Ding, Yan Yu, Mingrui Zhao, Wenzhe Zheng, Nanning Ren, Pengju Xi An Jiao Tong Univ Coll Artificial Intelligence Xian Peoples R China
Stable, effective and lightweight loop closure detection is an always pursued goal in real-time SLAM systems, that can be ported on embedded processors and deployed on autonomous robotics. Deep learning methods have e... 详细信息
来源: 评论
Drone Noise Reduction using Deep Convolutional autoencoder for UAV Acoustic Sensor Networks  16
Drone Noise Reduction using Deep Convolutional Autoencoder f...
收藏 引用
16th IEEE International Conference on Mobile Ad Hoc and Smart Systems (IEEE MASS)
作者: Chun, Chanjun Jeon, Kwang Myung Kim, Taewoon Choi, Wooyeol Korea Inst Civil Engn & Bldg Technol Future Infrastruct Res Ctr Goyang 10223 South Korea IntFlow Co Ltd AI Convergence Technol Res Ctr Gwangju 61080 South Korea Hallym Univ Sch Software Chunchon 24252 South Korea Chonsun Univ Dept Comp Engn Gwangju 61452 South Korea
Drones are widely utilized in various industries. Unfortunately, when a drone acquires sound through a microphone, which is installed itself, drone Hying and wind noises appear in recorded signals. Therefore, it is ne... 详细信息
来源: 评论
Author Identification using Deep Learning  15
Author Identification using Deep Learning
收藏 引用
15th IEEE International Conference on Machine Learning and Applications (ICMLA)
作者: Mohsen, Ahmed M. El-Makky, Nagwa M. Ghanem, Nagia Alexandria Univ Fac Engn Alexandria Egypt
Authorship identification is the task of identifying the author of a given text from a set of suspects. The main concern of this task is to define an appropriate characterization of texts that captures the writing sty... 详细信息
来源: 评论
Accurately Clustering Single-cell RNA-seq data by Capturing Structural Relations between Cells through Graph Convolutional Network
Accurately Clustering Single-cell RNA-seq data by Capturing ...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM)
作者: Zeng, Yuausong Zhou, Xiang Rao, Jiahua Lu, Yutong Yang, Yuedong Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou 510000 Peoples R China Sun Yat Sen Univ Minist Educ Key Lab Machine Intelligence & Adv Comp Guangzhou Peoples R China
Recent advances in single-cell RNA sequencing (scRNA-seq) technologies provide a great opportunity to study gene expression at cellular resolution, and the scRNA-seq data has been routinely conducted to unfold cell he... 详细信息
来源: 评论
Recognition of mild-to-moderate depression based on facial expression and speech  24
Recognition of mild-to-moderate depression based on facial e...
收藏 引用
5th International Conference on Computing, Networks and Internet of Things (CNIOT)
作者: Li, Jinlong Li, Ying Lanzhou Inst Technol Coll Elect Informat Engn Lanzhou Peoples R China
The behavioral symptoms of patients with mild to moderate depression (MMD) are usually not obvious enough, which poses a challenge to MMD recognition research. A three-level feature construction strategy for facial ex... 详细信息
来源: 评论
S-VECTOR: A DISCRIMINATIVE REPRESENTATION DERIVED FROM I-VECTOR FOR SPEAKER VERIFICATION  23
S-VECTOR: A DISCRIMINATIVE REPRESENTATION DERIVED FROM I-VEC...
收藏 引用
23rd European Signal Processing Conference (EUSIPCO)
作者: Isik, Yusuf Ziya Erdogan, Hakan Sarikaya, Ruhi TUBITAK BILGEM Gebze Turkey Sabanci Univ Fac Engn & Nat Sci Istanbul Turkey Microsoft Corp Redmond WA 98052 USA
Representing data in ways to disentangle and factor out hidden dependencies is a critical step in speaker recognition systems. In this work, we employ deep neural networks (DNN) as a feature extractor to disentangle a... 详细信息
来源: 评论