咨询与建议

限定检索结果

文献类型

  • 209 篇 期刊文献
  • 132 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 343 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 177 篇 计算机科学与技术...
    • 125 篇 电气工程
    • 50 篇 信息与通信工程
    • 44 篇 控制科学与工程
    • 29 篇 软件工程
    • 26 篇 仪器科学与技术
    • 22 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 交通运输工程
    • 3 篇 船舶与海洋工程
  • 71 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 10 篇 化学
    • 7 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 343 篇 denoising autoen...
  • 64 篇 deep learning
  • 22 篇 convolutional ne...
  • 16 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 anomaly detectio...
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 8 篇 unsupervised lea...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 deep neural netw...

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang
  • 2 篇 teeparthi kiran

语言

  • 330 篇 英文
  • 12 篇 其他
  • 1 篇 中文
检索条件"主题词=Denoising autoencoder"
343 条 记 录,以下是281-290 订阅
排序:
LPI radar signal recognition with U2-Net-based denoising  14
LPI radar signal recognition with U2-Net-based denoising
收藏 引用
14th International Conference on Information and Communication Technology Convergence, ICTC 2023
作者: Lee, Siho Nam, Haewoon Hanyang University Department of Electrical and Electronic Engineering Ansan Korea Republic of
Low Probability of Intercept (LPI) radar signals play a vital role in electronic warfare by maintaining informational superiority. Classifying these LPI radar waveforms is a key capability but remains a challenging ta... 详细信息
来源: 评论
NrGe-DTL: a computational framework for cancer drug response prediction based on deep transfer learning from combined denoised genomic profiles and chemical structure embedding of drugs
NrGe-DTL: a computational framework for cancer drug response...
收藏 引用
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
作者: Zhang, Yuchen Lian, Linghang Yang, Xuhua Zhejiang University of Technology Coll. of Computer Science and Technology Hangzhou China
In recent years, precision medicine has been consistently studied and employed in cancer treatment. One of the main challenges in precision medicine is accurately predicting a cancer patient's response to a specif... 详细信息
来源: 评论
A Data-Driven Reliability Assessment Method for Composite Power Systems  3
A Data-Driven Reliability Assessment Method for Composite Po...
收藏 引用
3rd International Conference on Energy, Power and Electrical Engineering, EPEE 2023
作者: Liu, Zeyu Zhang, Bingchen Li, Qiang Zhao, Feng Liu, Di Hou, Kai Tianjin University Key Laboratory of Smart Grid of Ministry of Education Tianjin300072 China State Grid Information and Telecommunication Group Co. Ltd Beijing102211 China
A data driven approach for reliability assessment of composite power systems have been proposed in our paper. A Multi-Layer Extreme Learning Machine (MELM) is trained to graph the relations among system states versus ... 详细信息
来源: 评论
Prediction model of bearing fault remaining useful life based on weighted variable loss degradation characteristics
收藏 引用
MEASUREMENT SCIENCE AND TECHNOLOGY 2024年 第9期35卷 096122-096122页
作者: Yu, Tianyi Li, Shunming Lu, Jiantao Nanjing Univ Aeronaut & Astronaut Coll Energy & Power Engn Nanjing 210016 Peoples R China Nantong Inst Technol Sch Automot Engn Nantong 226002 Peoples R China
In the prediction of bearing fault remaining useful life (RUL), the identification and feature extraction of early bearing faults are very important. In order to improve the accuracy of early fault RUL prediction, a b... 详细信息
来源: 评论
Feature extraction and classification of heart sound using 1D convolutional neural networks
收藏 引用
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING 2019年 第1期2019卷 1页
作者: Li, Fen Liu, Ming Zhao, Yuejin Kong, Lingqin Dong, Liquan Liu, Xiaohua Hui, Mei Beijing Inst Technol Sch Opt & Photon Beijing Key Lab Precis Optoelect Measurement Inst Beijing 100081 Peoples R China
We proposed a one-dimensional convolutional neural network (CNN) model, which divides heart sound signals into normal and abnormal directly independent of ECG. The deep features of heart sounds were extracted by the d... 详细信息
来源: 评论
Detection and reconstruction of measurements against false data injection and DoS attacks in distribution system state estimation: A deep learning approach
收藏 引用
MEASUREMENT 2023年 第1期210卷
作者: Raghuvamsi, Y. Teeparthi, Kiran Natl Inst Technol Andhra Pradesh Dept Elect Engn Tadepalligudem 534101 India
In a smart grid, the presence of advanced measurement devices and communication channels is significantly vulnerable due to cyberattacks such as false data injection attacks (FDIAs), and denial-of-service (DoS) attack... 详细信息
来源: 评论
Deep Learning-based Integrated Framework for stock price movement prediction
收藏 引用
APPLIED SOFT COMPUTING 2023年 133卷
作者: Zhao, Yanli Yang, Guang Wuhan Business Univ Sch Business Adm Wuhan Peoples R China Zhongnan Univ Econ & Law Sch Informat & Safety Engn Wuhan Peoples R China
Stock market prediction is a very important problem in the economics field. With the development of machine learning, more and more algorithms are applied in the stock market to predict the stock price movement. Howev... 详细信息
来源: 评论
A novel health indicator by dominant invariant subspace on Grassmann manifold for state of health assessment of lithium-ion battery
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 130卷
作者: Zhang, Ying Li, Yan-Fu Zhang, Ming Wang, Huan Univ Sci & Technol Beijing Sch Mech Engn Beijing 100084 Peoples R China Tsinghua Univ Dept Ind Engn Beijing 100084 Peoples R China Tsinghua Univ Inst Qual & Reliabil Beijing 100084 Peoples R China Aston Univ Coll Engn & Phys Sci Birmingham B4 7ET England
The precise estimation of the state of health (SoH) in Lithium-ion batteries (LiBs) relies heavily on a reliable health indicator (HI). Conventional indicators are often constructed by directly concatenating features ... 详细信息
来源: 评论
AutoMF: A hybrid matrix factorization model with deep learning to select anti-viral drugs for Covid-19
收藏 引用
JOURNAL OF COMPUTATIONAL SCIENCE 2023年 74卷
作者: Sajadi, Seyedeh Zahra Sadjadi, Seyed Mojtaba Chahooki, Mohammad Ali Zare Yazd Univ Dept Comp Engn Yazd Iran Shahrood Univ Technol Fac Comp Engn Shahrood Iran
In the wake of the novel Covid-19 disease pandemic, the global economy has been affected and health crises are widespread. The disease is still incurable, and no effective treatment exists for it. During the Covid-19 ... 详细信息
来源: 评论
Noise reduction method for wind turbine gearbox vibration signals based on CVMD-DRDSAE
收藏 引用
MEASUREMENT SCIENCE AND TECHNOLOGY 2024年 第11期35卷 116146-116146页
作者: Yao, Jinbao Yue, Bohao Wang, Yizhu Li, Xiang Southwest Petr Univ Sch Mechatron Engn Chengdu 610500 Peoples R China
Wind turbine gearbox fault feature extraction is difficult due to strong background noise. To address this issue, a noise reduction method combining comprehensive learning particle swarm optimization-variational mode ... 详细信息
来源: 评论