咨询与建议

限定检索结果

文献类型

  • 209 篇 期刊文献
  • 132 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 343 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 177 篇 计算机科学与技术...
    • 125 篇 电气工程
    • 50 篇 信息与通信工程
    • 44 篇 控制科学与工程
    • 29 篇 软件工程
    • 26 篇 仪器科学与技术
    • 22 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 交通运输工程
    • 3 篇 船舶与海洋工程
  • 71 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 10 篇 化学
    • 7 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 343 篇 denoising autoen...
  • 64 篇 deep learning
  • 22 篇 convolutional ne...
  • 16 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 anomaly detectio...
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 8 篇 unsupervised lea...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 deep neural netw...

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang
  • 2 篇 teeparthi kiran

语言

  • 330 篇 英文
  • 12 篇 其他
  • 1 篇 中文
检索条件"主题词=Denoising autoencoder"
343 条 记 录,以下是81-90 订阅
排序:
Reverberant Speech Recognition Based on denoising autoencoder
Reverberant Speech Recognition Based on Denoising Autoencode...
收藏 引用
14th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2013)
作者: Ishii, Takaaki Komiyama, Hiroki Shinozaki, Takahiro Horiuchi, Yasuo Kuroiwa, Shingo Chiba Univ Grad Sch Adv Integrat Sci Div Informat Sci Chiba Japan Tokyo Inst Technol Interdisciplinary Grad Sch Sci & Engn Dept Informat Proc Tokyo Japan
denoising autoencoder is applied to reverberant speech recognition as a noise robust front-end to reconstruct clean speech spectrum from noisy input. In order to capture context effects of speech sounds, a window of m... 详细信息
来源: 评论
A denoising autoencoder FOR SPEAKER RECOGNITION. RESULTS ON THE MCE 2018 CHALLENGE  44
A DENOISING AUTOENCODER FOR SPEAKER RECOGNITION. RESULTS ON ...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Font, Roberto Biometr Vox SL Murcia Spain
We propose a denoising autoencoder ( DAE) for speaker recognition, trained to map each individual ivector to the mean of all ivectors belonging to that particular speaker. The aim of this DAE is to compensate for inte... 详细信息
来源: 评论
Music Removal by Convolutional denoising autoencoder in Speech Recognition
Music Removal by Convolutional Denoising Autoencoder in Spee...
收藏 引用
Asia-Pacific-Signal-and-Information-Processing-Association Annual Summit and Conference (APSIPA ASC)
作者: Zhao, Mengyuan Wang, Dong Zhang, Zhiyong Zhang, Xuewei Tsinghua Univ Res Inst Informat Technol CSLT Tsinghua Natl Lab Informat Sci & Technol Beijing Peoples R China
Music embedding often causes significant performance degradation in automatic speech recognition (ASR). This paper proposes a music-removal method based on denoising autoencoder (DAE) that learns and removes music fro... 详细信息
来源: 评论
Knowledge-Experience Graph with denoising autoencoder for Zero-Shot Learning in Visual Cognitive Development  27th
Knowledge-Experience Graph with Denoising Autoencoder for Ze...
收藏 引用
27th International Conference on Neural Information Processing
作者: Zhang, Xinyue Yang, Xu Liu, Zhiyong Zhang, Lu Ren, Dongchun Fan, Mingyu Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Meituan Dianping Grp Beijing 100190 Peoples R China
Visual cognitive development is vital for intelligent robots to handle various types of visual tasks rather than predefined ones. It can transfer the classification ability from an original model to a novel task. Howe... 详细信息
来源: 评论
Stacked denoising autoencoder Based Stock Market Trend Prediction via K-Nearest Neighbour Data Selection  24th
Stacked Denoising Autoencoder Based Stock Market Trend Predi...
收藏 引用
24th International Conference on Neural Information Processing (ICONIP)
作者: Sun, Haonan Rong, Wenge Zhang, Jiayi Liang, Qiubin Xiong, Zhang Beihang Univ Sino French Engineer Sch Beijing Peoples R China Beihang Univ Sch Comp Sci & Engn Beijing Peoples R China
In financial applications, stock-market trend prediction has long been a popular subject. In this research, we develop a new predictive model to improve the accuracy by enhancing the denoising process which includes a... 详细信息
来源: 评论
TWO-STAGE NOISE AWARE TRAINING USING ASYMMETRIC DEEP denoising autoencoder  41
TWO-STAGE NOISE AWARE TRAINING USING ASYMMETRIC DEEP DENOISI...
收藏 引用
41st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Lee, Kang Hyun Kang, Shin Jae Kang, Woo Hyun Kim, Nam Soo Seoul Natl Univ Dept Elect & Comp Engn Gwanak POB 34 Seoul 151744 South Korea Seoul Natl Univ INMC Gwanak POB 34 Seoul 151744 South Korea
Ever since the deep neural network (DNN)-based acoustic model appeared, the recognition performance of automatic speech recognition has been greatly improved. Due to this achievement, various researches on DNN-based t... 详细信息
来源: 评论
denoising autoencoder based Long non-coding RNA-Disease Association Prediction
收藏 引用
Procedia Computer Science 2023年 218卷 836-844页
作者: C.P. Gopikrishnan Manu Madhavan
Long non-coding RNAs (lncRNAs) are recent listing in RNA Bioinformatics, which is getting more popular due to their important functional roles. According to the available research, lncRNAs play an essential role in mu... 详细信息
来源: 评论
Ensemble Modeling of denoising autoencoder for Speech Spectrum Restoration  15
Ensemble Modeling of Denoising Autoencoder for Speech Spectr...
收藏 引用
15th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2014)
作者: Lu, Xugang Tsao, Yu Matsuda, Shigeki Hori, Chiori Natl Inst Informat & Commun Technol Tokyo Japan Acad Sinica Res Ctr Informat Technol Innovat Taipei Taiwan
denoising autoencoder (DAE) is effective in restoring clean speech from noisy observations. In addition, it is easy to be stacked to a deep denoising autoencoder (DDAE) architecture to further improve the performance.... 详细信息
来源: 评论
Leveraging Stacked denoising autoencoder in Prediction of Pathogen-Host Protein-Protein Interactions  6
Leveraging Stacked Denoising Autoencoder in Prediction of Pa...
收藏 引用
IEEE 6th International Congress on Big Data (BigData Congress)
作者: Chen, Huaming Shen, Jun Wang, Lei Song, Jiangning Univ Wollongong Sch Comp & Informat Technol Wollongong NSW Australia Monash Univ Dept Biochem & Mol Biol Melbourne Vic Australia
In big data research related to bioinformatics, one of the most critical areas is proteomics. In this paper, we focus on the protein-protein interactions, especially on pathogen-host protein-protein interactions (PHPP... 详细信息
来源: 评论
Multivariate Time Series Missing Data Imputation Using Recurrent denoising autoencoder
Multivariate Time Series Missing Data Imputation Using Recur...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Zhang, Jianye Yin, Peng Chinese Acad Sci Joint Engn Res Ctr Hlth Big Data Intelligent Anal Shenzhen Inst Adv Technol Shenzhen Peoples R China Tsinghua Univ Shenzhen Int Grad Sch Dept Comp Sci & Technol Shenzhen Peoples R China
This paper presents a novel method for imputing missing data of multivariate time series by adapting the Long Short Term-Memory(LSTM) and denoising autoencoder(DAE). Missing data are ubiquitous in many domains;proper ... 详细信息
来源: 评论